
"The first step in a great mobile experience"

INFUZE C++ WRAPPER USER GUIDE

Support

The ScientiaMobile Enterprise Support Portal is open to all WURFL users, both commercial license holders
and evaluation users. It represents the combined knowledge base for the WURFL community. Commercial
licensees are invited to post questions in the forum using the account to which their licenses are
associated. This may mean faster handling of those posts by ScientiaMobile's personnel.

For commercial license holders, there are tiered support levels to address a variety of business support
needs. After logging into your account, commercial licensees with support options can access the
Enterprise Support portal to post tickets. These tickets will receive expedited attention.

To inquire about support plans, use our License Inquiry or our General Inquiry form.

Update Notifications

If you would like to be notified of our API updates, major data updates, and other technical changes,
please subscribe to our ScientiaMobile Announcements list

www.scientiamobile.com
Tel +1.703.310.6650
E-mail: sales@scientiamobile.com

Copyright © 2025 ScientiaMobile, all rights reserved. WURFL
Cloud, WURFL OnSite, WURFL and, InFuze WURFL InSight
and respective logos are trademarks of ScientiaMobile.
Apache is the trademark of the Apache Software
Foundation. NGINX is the trademark of Nginx Software Inc.
Varnish is the trademark of Varnish Software AB

WURFL InFuze C++ API Wrapper: User Guide

https://support.scientiamobile.com/hc/en-us
https://support.scientiamobile.com/hc/en-us
https://www.scientiamobile.com/inquiry
https://www.scientiamobile.com/contact
https://www.scientiamobile.com/page/enewsletter

Introduction

The WURFL InFuze C++ Wrapper is a single HPP header file encapsulating the WURFL InFuze C API in
C++ classes. This provides a handy and intuitive OOP interface for WURFL InFuze.

Supported Platforms

The C++ Wrapper is supported on the same platforms as the WURFL InFuze C API, providing a (C++98 or
above) C++ compiler. Among these, there are multiple Linux distros such as Ubuntu, CentOS, RedHat,
Fedora, and FreeBSD. Other supported operating systems include Windows and Mac OS X.

Installation

Being a header-only package, no explicit installation is needed. You just need to add:

#include <wurfl/wurfl.hpp>

to begin using the InFuze C++ Wrapper in your code. The wrapper relies on a proper installation of
WURFL InFuze.

WURFL Data Snapshot

To perform lookups, you will need a copy of your WURFL data snapshot (also referred to as the wurfl.xml).
While there is one included in the release package, it is intended to be a sample and will not contain all of
your licensed capabilities. Your licensed WURFL data snapshot can be accessed by following these
directions. It's strongly recommended, as first thing, to download the latest version of your WURFL data
snapshot as shown in the example below.

Basic Usage

Here is a quick code sample you can run to get started with the C++ Wrapper:

#include <wurfl/wurfl.hpp>
#include <iostream>

int main(int argc, char **argv){
 // Download WURFL data file
 // substitute https://data.scientiamobile.com/xxxxx/wurfl.zip with your account snapshot data URL from the Scien
tiaMobile Vault
 // the second parameter is the destination folder where the zip file will be extracted. It must be writable by the pr
ocess.
 wurfl::Manager::wurflDownload("https://data.scientiamobile.com/xxxxx/wurfl.zip", ".");

 // declare a Builder and set a data file as root
 wurfl::Builder builder;
 builder.setRoot("./wurfl.zip");

 // let the Builder build a Manager
 wurfl::Manager manager(builder.build());

 // use the Manager to obtain a Device by looking up a User Agent string
 wurfl::Device device = manager.lookup("Mozilla/5.0 (Linux; Android 5.0; SAMSUNG SM-G925 Build/LRX21V) Appl
eWebKit/537.36 (KHTML, like Gecko) SamsungBrowser/4.0 Chrome/44.0.2403.133 Mobile Safari/537.36");

 // retrieve Device ID
 std::cout << "device: " << device.id() << std::endl;

 // retrieve a static and virtual capability
 std::cout << "brand_name: " << device.staticCapability("brand_name") << std::endl;
 std::cout << "form_factor: " << device.virtualCapability("form_factor") << std::endl; // NOTE: virtual capabilities
are calculated at runtime!
}

https://docs.scientiamobile.com/guides/wurfl-snapshot-generator

There is no need to call the XXX_destroy() method. Destruction of the Builder, Manager, and Device
objects are handled automatically by the C++ destructor mechanism when the instances go out of scope.

As you will see, the Manager object wraps wurfl_XXX() InFuze C API calls, while the Device wraps the
wurfl_device_XXX() InFuze C API calls. The Builder is a utility class introduced in the C++ layer which
wraps an engine configuration and creation. All required calls are conveniently issued in order in the
Build::build() method, after you have configured your engine with all the desired Builder::setXXX() calls.

More on Lookup

Looking up a single user agent string is a basic use case. More realistic scenarios call for look-ups using a
user-defined HTTP headers retrieval callback function - similar to the WURFL C API wurfl_lookup() call:

const char *lookup_callback(const char *header_name, const void *headers_data)
{
 ...
 your code that receives header data in the "headers_data" parameter,
 receives the requested header name in the "header_name" parameter
 and returns the value of the requested header
 ...
}

...

// declare a Builder and set a data file as root
wurfl::Builder builder;
builder.setRoot("/tmp/wurfl.zip");

// let the Builder build a Manager
wurfl::Manager manager(builder.build());

// use the Manager to obtain a Device by looking up header values passed with a callback function
wurfl::Device device = manager.lookup(&lookup_callback, your_headers_data)

If you choose to roll out your own user-defined HTTP header retrieval callback, you should perform a case-
insensitive comparison on header names, and/or verify if your scenario supplies header names in a
different case, rather than the standard one expected by WURFL.

Return values

While the WURFL C API call typically returns integer error codes (i.e., wurfl_error), the C++ WURFL API
Wrapper uses C++ exception mechanisms to report usage failures:

Exception
Thrown

Source of the
Exception

Reason for the Exception

std::logic_error private
Manager::setXXX()
methods called from
Builder::build()

Configuration parameters values supplied to Builder
setXXX() methods are invalid. On Builder::build() call,
Manager creation fails.

std::runtime_error Manager and Device
query methods

the query cannot be satisfied (wrong device id,
unexistent cap/vcap, etc)

The underlying WURFL C API error message can be retrieved by calling the what() method of the
std::exception being thrown. It is up to the client code to correctly wrap the WURFL creation/query code in
adequate try/catch constructs.

The WURFL Updater

Since InFuze 1.8.3.0, a native internal Updater Module is available.

The WURFL Updater will automatically keep your data file up-to-date with ScientiaMobile's data release
schedule. It handles all download and reload operations - even in multithreaded, multiprocess scenarios,
along with optional logging of operations, network errors, etc.

While the WURFL InFuze engine construction calls are completely hidden in the Builder class, we decided
to expose the updater functionalities both in the Builder and in the Manager interfaces. This is because
one could want a completely configured and working updater since the Manager creation, or he/she could
prefer to configure and/or start the updater later. To create a Manager instance with a pre-configured
background updater, you can do something like this:

wurfl::Builder builder;
builder.setRoot("/tmp/wurfl.zip");
// Replace https://data.scientiamobile.com/xxxxx/wurfl.zip with your account snapshot data URL from the Scientia
Mobile Vault
builder.setUpdaterDataURL("https://data.scientiamobile.com/xxxxx/wurfl.zip");
builder.setUpdaterDataFrequency(WURFL_UPDATER_FREQ_DAILY);
builder.setUpdaterLogPath("wurfl_cpp_updater.log");
builder.updaterStart();

wurfl::Manager manager(builder.build());

Or, if you prefer to build a Manager instance without an updater, and eventually configure and start it
later:

wurfl::Builder builder;
builder.setRoot(wurflFullDataFile);
wurfl::Manager manager(builder.build());

// ...later:
// Replace https://data.scientiamobile.com/xxxxx/wurfl.zip with your account snapshot data URL from the Scientia
Mobile Vault
manager.setUpdaterDataURL("https://data.scientiamobile.com/xxxxx/wurfl.zip");
manager.setUpdaterDataFrequency(WURFL_UPDATER_FREQ_DAILY);
manager.setUpdaterLogPath("wurfl_cpp_updater.log");
manager.updaterStart();

You can check for detailed updater operations in the log file set with the setUpdaterLogPath() call.
Logging is not mandatory but highly recommended, and the best way to troubleshoot network problems
and the like.

Please note that the only mandatory call for the updater module to work is setUpdaterDataURL(), where
you set your personal WURFL Snapshot URL (located in your license account page). This, in turn, is
dependent on a successful setRoot() call:

The WURFL data file, and the path specified in the setRoot() call, MUST have write/rename
access. The old data file will be replaced (i.e, a rename operation will be performed on it) with
the updated version upon successful update completion, and the directory where it resides will
be used for remote file download, etc.

ScientiaMobile does not distribute uncompressed XML data files via the updater. This means that
if you plan to use this feature, you MUST use a compressed (i.e, a ZIP or a XML.GZ) file as data
root in the setRoot() call.

Please note that setUpdaterDataFrequency() sets the frequency of Updater checks for the data file, not
how often the engine data file is actually updated.

The WURFL InFuze Updater functionality relies on the presence and features of the curl command-line
utility. A check for correct curl installation on the system being used is done in the setUpdaterDataURL()

call.

WURFL InFuze C++ API Wrapper Reference

class wurfl::Builder

The Builder class abstracts the configuration and the construction of a WURFL engine.

Method Description

Builder() Default constructor. Creates a Builder
instance set to InFuze defaults.

Builder& setRoot(path_to_root_xml) Sets the root WURFL data file to be used by
WURFL InFuze to a specific path in your file
system. This call is mandatory in order to
obtain a working Manager from a build() call.

Builder& addPatch(path_to_patch_xml) Adds a patch to WURFL by taking the path to
the patch xml file.

Builder& addPatches(begin_iterator,
end_iterator)

Adds several patches paths to WURFL by
specifying the begin and end iterators of a
paths string collection.

Builder& addPatches(collection) Adds a whole collection of patches' paths to
WURFL.

void clearPatches() Clears all the patches' paths stored in the
Builder instance. Useful if you want to build
several engines reusing the same Builder
instance.

Builder&
setCacheProvider(wurfl_cache_provider, const
char*)

Sets the WURFL Cache provider to be used:
WURFL_CACHE_PROVIDER_NONE or
WURFL_CACHE_PROVIDER_LRU (default).
Depending on the cache provider, a cache
configuration string can also be specified (see
also WURFL C API documentation).

const std::vector<std::string>&
getVirtualCapabilities()

Returns a cached const vector of virtual
capabilities names. Please use this instead of
the deprecated virtualCapabilities() method.

Builder& setUpdaterLogPath(log_file_path) Instruct the internal WURFL InFuze Updater to
log any operation/error to the named file. If
not used, the updater will not log anything.

Builder& setUpdaterDataURL(url) Set remote data file URL to be downloaded via
internal WURFL Infuze Updater. This is the
only mandatory call if you want to use the
InFuze Updater.

Builder&
setUpdaterDataFrequency(wurfl_updater_freq
uency)

Sets how often the updater checks for any
new/updated WURFL data file to be
downloaded and used by the engine:
WURFL_UPDATER_FREQ_DAILY (default) or
WURFL_UPDATER_FREQ_WEEKLY.

Builder& updaterStart() Tells the Builder to start the background
updater thread on the Manager instance as
soon as is built and returned.

Manager build() Builds and returns a Manager instance
configured with the previously selected
options(engine target, cache, root data file,
updater options etc).

Method Description

class wurfl::Manager

The Manager class abstract the runtime usage of a WURFL engine. Amongst its responsibilities, the most
important one is to perform lookups on user agent strings, or more generally on request headers, in order
to identify the associated devices. Each Manager instance also has a built-in updater instance, by which
both synchronous or asynchronous updates of the WURFL data file can be performed.

Method Description

Manager(const Manager&) Copy Constructor. The creation of a new
Manager instance is to be done by copy
construction from the return of a Builder
instance build() call. No Manager default
constructor is provided. Please see code
examples above.

wurfl_handle getHandle() Returns the underlying wrapped WURFL
handle.

const char* info() Returns a string describing the loaded WURFL
data file and optional patch files.

void wurflDownload(URL, folder) Downloads from URL an up-to-date copy of
WURFL file in the specified folder.

const char* loadTime() Returns the timestamp of the latest successful
WURFL load/update.

const std::vector<std::string>&
getVirtualCapabilities()

Returns a cached const vector of virtual
capabilities names. Please use this instead of
the deprecated virtualCapabilities() method.

DEPRECATED const std::vector<std::string>&
getCapabilities()

Returns a cached const vector of supported
capabilities names.

const std::vector<std::string>&
getStaticCapabilities()

Returns a cached const vector of supported
static capabilities names. Please use this
instead of the deprecated getCapabilities()
method.

const std::vector<std::string>&
getDeviceIds()

Returns a cached const vector of supported
device identifiers names. Please use this
instead of the deprecated deviceIds() method.

Device lookup(const char* useragent) Query WURFL for a device matching the given
user agent string. It returns a Device instance.

Device lookup(const std::string &useragent) Query WURFL for a device matching the given
user agent string. It returns a Device instance.

Device lookup(wurfl_header_retrieve_callback,
const void*)

Query WURFL passing a header-retrieval user
defined callback. It returns a Device instance.

DEPRECATED Device lookup(const
std::map<std::string, std::string> &headers)

Query WURFL passing a std::map of headers
key-value pairs. It returns a Device instance. It
has been deprecated in favor of the usage of
the lookup(const HeadersMap&) call because
std::map has case-sensitive value retrieval
(you should stay case-insensitive when
working with HTTP headers)

Device lookup(wurfl::HeadersMap &headers) Query WURFL passing a helper key-case-
insensitive std::map wrapper of headers key-
value pairs. It returns a Device instance

Device device(const char*) Returns a Device instance given the WURFL
device ID.

bool hasCapability(const char*
capabilityName)

Checks if the given name identifies a
capability.

bool hasVirtualCapability(const char*
virtualCapabilityName)

Checks if the given name identifies a virtual
capability.

Manager& setUpdaterLogPath(const
std::string& log_file_path)

Instruct the internal WURFL Infuze updater to
log to file any operation/error. If unused, the
updater will not log anything.

Manager& setUpdaterDataURL(const
std::string& url)

Set remote data file URL to be downloaded via
internal WURFL InFuze Updater. This is the
only MANDATORY call if you want to use the
InFuze Updater.

Manager&
setUpdaterDataFrequency(wurfl_updater_freq
uency)

Sets how often the updater checks for any
new/updated WURFL data file to be
downloaded and used by the engine:
WURFL_UPDATER_FREQ_DAILY or
WURFL_UPDATER_FREQ_WEEKLY.

void updaterStart() Starts the background, non-blocking updater
thread.

void updaterStop() Stops the background, non-blocking updater
thread.

Method Description

void updaterRunOnce() Starts a foreground, blocking update
synchronous operation.

Method Description

class wurfl::Device

The Device class abstracts a device retrieved by WURFL via lookup or direct device ID search. It
encapsulates the wurfl_device_XXX() C API calls, exposing several methods to query a Device instance for
its capabilities and state.

Method Description

wurfl_device_handle getHandle() Returns the underlying wrapped WURFL
handle.

DPRECATED const char *capability(const char
*cap_name)

Queries the Device instance for the value of
the requested capability.

const char *staticCapability(const char
*cap_name)

Queries the Device instance for the value of
the requested static capability.

const char *virtualCapability(const char
*vcap_name)

Queries the Device instance for the value of
the requested virtual capability.

const char *userAgent() Queries the Device instance for the value of
the original user agent string used in the
lookup.

const char *normalizedUserAgent() Queries the Device instance for the value of
the user agent string used in the lookup after
the normalization applied by WURFL engine.

const char *id() Queries the Device instance for his WURFL
device ID string.

const char *rootId() Queries the Device instance for the device ID
string of his root device.

bool isActualDeviceRoot() Tests if the Device instance represents a root
device.

	"The first step in a great mobile experience"
	INFUZE C++ WRAPPER USER GUIDE
	Support
	Update Notifications

	WURFL InFuze C++ API Wrapper: User Guide
	Introduction
	Supported Platforms
	Installation
	WURFL Data Snapshot
	Basic Usage
	More on Lookup
	Return values
	The WURFL Updater
	WURFL InFuze C++ API Wrapper Reference

