
"The first step in a great mobile experience"

INFUZE CSHARP MODULE USER GUIDE

Support

The ScientiaMobile Enterprise Support Portal is open to all WURFL users, both commercial license holders
and evaluation users. It represents the combined knowledge base for the WURFL community. Commercial
licensees are invited to post questions in the forum using the account to which their licenses are
associated. This may mean faster handling of those posts by ScientiaMobile's personnel.

For commercial license holders, there are tiered support levels to address a variety of business support
needs. After logging into your account, commercial licensees with support options can access the
Enterprise Support portal to post tickets. These tickets will receive expedited attention.

To inquire about support plans, use our License Inquiry or our General Inquiry form.

Update Notifications

If you would like to be notified of our API updates, major data updates, and other technical changes,
please subscribe to our ScientiaMobile Announcements list

www.scientiamobile.com
Tel +1.703.310.6650
E-mail: sales@scientiamobile.com

Copyright © 2024 ScientiaMobile, all rights reserved. WURFL
Cloud, WURFL OnSite, WURFL and, InFuze WURFL InSight
and respective logos are trademarks of ScientiaMobile.
Apache is the trademark of the Apache Software
Foundation. NGINX is the trademark of Nginx Software Inc.
Varnish is the trademark of Varnish Software AB

WURFL InFuze Module for C# : User Guide

https://support.scientiamobile.com/hc/en-us
https://support.scientiamobile.com/hc/en-us
https://www.scientiamobile.com/inquiry
https://www.scientiamobile.com/contact
https://www.scientiamobile.com/page/enewsletter

WURFL InFuze for C# is a C# module wrapping the WURFL C API. InFuze for C# exploits the performance
of the InFuze C API inside your C# applications without having to write your own binding code.

Installing libwurfl

In order for the Module to work it is ESSENTIAL that the libwurfl library is installed on your system.
libwurfl is provided in your Customer Vault/FileX.

If you have not already installed libwurfl, instructions can be found here. Release notes for each API can
be found here.

To enable WURFL InFuze for C# on your application, you must download it from your File Manager.
The WurflInFuze.dll file must be added as a reference to any WURFL project, while the
WurflInFuze.Aspnet.Extensions.dll file must be referenced only in ASP.NET projects where you plan to use
WURFL InFuze for C#.
For example, you don't strictly need to reference WurflInFuze.Aspnet.Extensions.dll if you're using WURFL
InFuze for C# from within a Console Application.

Warning: For installation on Windows, libwurfl v1.8.3.0 or greater is required.
Note: A .NET Framework of at least 4.5.2 is required for installation.

Getting Started

In the next sections we'll see a sample Console Application as well as an ASP.NET Web based application ,
using device detection and accessing WURFL static and virtual capabilities.

Console Application Usage

Here is an example Console Application to get started:

using WURFLInFuze;

namespace WURFLInFuzeSimpleTest
{
 class Program
 {
 static void Main(string[] args)
 {

Create the InMemoryConfigurer object setting the WURFL data file path;

 try
 {
 InMemoryConfigurer configurer = new InMemoryConfigurer()
 .MainFile("C:\\Program Files\\Scientiamobile\\InFuze\\wurfl.zip");

 IWURFLManager manager = null;

Create the WURFL Manager once, then lookup UserAgent and get the Device-Id, Static Capabilities and
Virtual Capabilities required in your implementation (note that Virtual Capabilities are calculated at
runtime).

 manager = WURFLManagerBuilder.Build(configurer);

 String ua = "Dalvik/1.6.0 (Linux; U; Android 4.3; SM-N900T Build/JSS15J)";

 IDevice device = manager.LookupUserAgent(ua);

 Console.WriteLine("Device : {0}", device.Id);

https://docs.scientiamobile.com/documentation/infuze/infuze-c-api-user-guide
https://docs.scientiamobile.com/documentation/changelog/infuze-api-change-log
https://filex.scientiamobile.com/user/index#products/onsite
file:///documentation/infuze/infuze-csharp-module-user-guide#consoleusage
file:///documentation/infuze/infuze-csharp-module-user-guide#aspnetusage

 String capName = "brand_name";
 Console.WriteLine("Static Capability {0}: {1}", capName, device.GetCapability(capName));

 String vcapName = "is_android";
 Console.WriteLine("Virtual Capability {0}: {1}", vcapName, device.GetVirtualCapability(vcapName));

If you would like to look up a set of HTTP headers instead of a User-Agent (for example to look up requests
with User-Agent Client Hints), you can use LookupHeaders instead of LookupUserAgent as shown below.

 manager = WURFLManagerBuilder.Build(configurer);

 Dictionary<string, string> headers = new Dictionary<string, string>();
 headers.Add("User-Agent", "Mozilla/5.0 (Linux; Android 10; K) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/100.0.0.0 Mobile Safari/537.36");
 headers.Add("Sec-Ch-Ua", "\"Chromium\";v=\"94\", \"HuaweiBrowser\";v=\"99\", \";Not A Brand\";v=\"99
\"");
 headers.Add("Sec-Ch-Ua-Full-Version", "99.123.456");
 headers.Add("Sec-Ch-Ua-Platform", "Android");
 headers.Add("Sec-Ch-Ua-Platform-Version", "12");
 headers.Add("Sec-Ch-Ua-Model", "Pixel 6");

 IDevice device = manager.LookupHeaders(headers);

 Console.WriteLine("Device : {0}", device.Id);

 String capName = "brand_name";
 Console.WriteLine("Static Capability {0}: {1}", capName, device.GetCapability(capName));

 String vcapName = "is_android";
 Console.WriteLine("Virtual Capability {0}: {1}", vcapName, device.GetVirtualCapability(vcapName));

You can even ask the device instance for the full list of its Static and Virtual Capabilities as well as its
names and values.

 Console.WriteLine("--- Device Static Capabilities ---");
 foreach (KeyValuePair<string, string> dCap in device.GetCapabilities())
 Console.WriteLine("[{0}] = [{1}]", dCap.Key, dCap.Value);

 Console.WriteLine("--- Device Virtual Capabilities ---");
 foreach (KeyValuePair<string, string> vCap in device.GetVirtualCapabilities())
 Console.WriteLine("[{0}] = [{1}]", vCap.Key, vCap.Value);

Dispose the device object when you don't need it anymore. This is necessary to release allocated
resources for that instance on the WURFL C API side. It sets the C# instance as disposable for the garbage
collector.

 device.Dispose();

Dispose the manager object when you don't need it anymore. As for the IDevice object, it is necessary to
release allocated resources on the WURFL C API side.

 manager.Dispose();
 }

WURFL will throw a WURFLException in the case of failure throughout the entire process

 catch (WURFLException e)
 {
 Console.WriteLine("WURFL throws this exception : {0}", e.Message);
 }
 catch (Exception e)
 {
 Console.WriteLine("System throws this exception : {0} - {1}", e.GetType(), e.Message);
 }
 }
 }
}

Static Capability filtering

In order to reduce memory usage and increase performance, you can specify a subset of the 500+

WURFL static capabilities that will be held by the WURFL Manager object.

You can set capability filters as follows:

configurer.SelectCapabilities(new String[] { "device_os", "is_tablet" });

Note: In this case you will be able to access only the device_os and is_tablet Static
Capability values of detected devices. Looking for unfiltered Static Capabilities will return
empty strings.

WURFL Cache

In order to increase performance while processing real HTTP traffic, we suggest setting up an LRU cache.
The LRU caching strategy will speed up lookup operations on User Agents that have already been
processed by keeping them in a Least Recently Used map. By default the cache will be set to 30000
entries which accounts for 7 to 10 MB of additional memory usage. Users are advised to size their cache
generously (100,000 or more) to increase performance. For more information, please see LRU Cache
Mechanism

If you want to modify the cache size, you can do it in the InMemoryConfigurer object:

configurer.SetCacheSize(100000);

If you want to disable the cache feature:

configurer.DisableCache();

WURFL Updater

If you want to keep your wurfl.zip uptodate with Scientiamobile's data release schedule, then you might
want to use the Updater feature.

To configure the Updater you need your personal updater url taken from Scientiamobile Customer Vault.
You may configure the periodicity (frequency) you would like for update checks, choosing from two
values: Daily and Weekly (the default value is Daily). Use UpdaterSetLogPath to set updater log path
where you will find detailed logs on Updater activity Do note that a wurfl.zip file must already be present
in a writable path in order for the updater to check the file and determine whether or not it needs to
update the file.

There are to ways to configure the WURFL Updater:

using IWURFLManager instance methods:

manager.UpdaterSetDataUrl("https://data.scientiamobile.com/xxxxx/wurfl.zip");
manager.UpdaterSetDataFrequency(WurflUpdaterFrequency.WURFL_UPDATER_FREQ_DAILY);
//manager.UpdaterSetDataFrequency(WurflUpdaterFrequency.WURFL_UPDATER_FREQ_WEEKLY);
manager.UpdaterSetLogPath("C:\\Temp\\updater.log");
// start the updater explicitly
manager.UpdaterStart();

using InMemoryConfigurer object:

configurer.UpdaterUrl("https://data.scientiamobile.com/xxxxx/wurfl.zip");
configurer.UpdaterFrequency(WurflUpdaterFrequency.WURFL_UPDATER_FREQ_DAILY);
//configurer.UpdaterFrequency(WurflUpdaterFrequency.WURFL_UPDATER_FREQ_WEEKLY);
configurer.UpdaterLogpath("C:\\Temp\\updater.log");

Note: When using the InMemoryConfigurer object, you don't need to explicitly start the
Updater. It will be done automatically when the IWURFLManager instance is created.

http://en.wikipedia.org/wiki/Cache_algorithms#Least_Recently_Used

ASP.NET Web Application Usage

In your ASP.NET project, add the WurflInFuze.dll and WurflInFuze.Aspnet.Extensions.dll files as a
reference.

In your App_Code folder create a class WurflSampleASPNETApp which will hold the WURFL manager
instance used for lookups.

using WURFL;

public static class WurflSampleASPNETApp
{
 public static IWURFLManager WurflManager;
}

In an ASP.NET Web application, the Application_Start method in your Global.asax file is the place where all
one-off initializations will be performed. Here you can instruct the method to initialize the WurflManager
instance.

 .
 .
<%@ Import Namespace="WURFLInFuze" %>
<%@ Import Namespace="WURFLInFuze.Aspnet.Extensions.Config" %>
 .
 .
 .
 .

 private void Application_Start(Object sender, EventArgs e)
 {
 try
 {
 WurflSampleASPNETApp.WurflManager = WURFLManagerBuilder.Build(new ApplicationConfigurer());
 }
 catch (Exception ex)
 {
 HttpRuntime.UnloadAppDomain();
 initializationError = ex;
 }
 }
 .
 .
 .
 .

The WURFL configuration should be placed in your web.config file, adding the following directives:

<wurfl>
 <mainFile path="~/App_Data/wurfl.zip" />
</wurfl>

This instructs the WurflSampleASPNETApp.WurflManager initialization to look for the wurfl.zip file in your
application's App_Data folder.

The <wurfl> section is user-defined and needs to be registered before use. For this reason, you also need
to add the following at the top of your web.config file:

<configuration>
 <configSections>
 <section name="wurfl" type="WURFLInFuze.Aspnet.Extensions.Config.WURFLConfigurationSection, WurflInFuz
e.Aspnet.Extensions, Version=1.9.5.0, Culture=neutral, PublicKeyToken=816aeec277aa13b9"/>
 </configSections>
 :
</configuration>

With the WURFL Manager object instantiated by Application_Start, you are ready to lookup
Useragent/Request.

To perform a lookup during your Default.aspx page loading, place the following code in Ã¬ts CodeBehind
(the Default.aspx.cs file)

 .
 .
 using WURFLInFuze;
 using WURFLInFuze.Aspnet.Extensions.Config;
 .
 .
 public partial class _Default : System.Web.UI.Page
 {
 public IDevice wurflDevice;
 public String wurflDeviceId;
 public String wurflDeviceBrandName;
 public String wurflDeviceIsAndroid;

 protected void Page_Load(object sender, EventArgs e)
 {
 /**
 * on page load we populate wurflDevice and wurflDeviceId with wurfl detection results
 **/
 wurflDevice = WurflSampleASPNETApp.WurflManager.LookupRequest(Request);
 wurflDeviceId = wurflDevice.Id;
 wurflDeviceBrandName = wurflDevice.GetCapability("brand_name");
 wurflDeviceIsAndroid = wurflDevice.GetVirtualCapability("is_android");
 }
 }
 .
 .

Note: You can lookup devices either by passing the whole HttpRequest or the simple User-
Agent.
In this last case, you may use the following code

 wurflDevice = WurflSampleASPNETApp.WurflManager.LookupUserAgent(Request.UserAgent);

Note: Using the whole HttpRequest will result in a more precise device lookup

Now you can show the lookup result in your Default.aspx file

 .
 .
 <body>
 <form id="form1" runat="server">
 <div>
 WURFL device Id = <%= wurflDeviceId %>

 WURFL device Brand Name = <%= wurflDeviceBrandName %>

 WURFL device Is Android = <%= wurflDeviceIsAndroid %>

 </div>
 </form>
 </body>
 .
 .

You can lookup devices either by passing a plain User-Agent String.

The value associated with a capability (static or virtual) is always expressed as a string, even when it
logically represents a number or a Boolean.

Don't forget to Dispose the IDevice and IWURFLManager instances when you don't need
them anymore.

Static Capability filtering

In order to reduce memory usage and increase performance, you can specify a subset of the 500+

WURFL static capabilities that will be held by the WURFL manager object.

You can set capability filters in your web.config as follows:

<wurfl>
 <mainFile path="~/App_Data/wurfl.zip" />
 <filter caps="resolution_width,is_smarttv" />
</wurfl>

Note: In this case you will be able to access only the device_os and is_tablet Static
Capabilities values of the detected devices. Looking for unfiltered Static Capabilities will
return an empty string.

WURFL Cache

In order to increase performance while processing real HTTP traffic, we suggest setting up an LRU cache.
The LRU caching strategy will speed up lookup operations on User Agents that have already been
processed by keeping them in a Least Recently Used map. By default the cache will be set to 30000
entries which accounts for 7 to 10 MB of additional memory usage. Specific concerns regarding memory
usage apart, users are advised to size their cache generously (100,000 or more) to increase performance.
For more information, please see LRU Cache Mechanism

If you want to modify the cache size, you can do it in InMemoryConfigurer object:

<wurfl cachesizeua="100000">
 .
 .
</wurfl>

If you want to disable the cache feature:

<wurfl usecache="false">
 .
 .
</wurfl>

WURFL Updater

If you want to keep your wurfl.zip uptodate with Scientiamobile's data release schedule, you should
consider using the WURFL Updater.

To configure the Updater you need your personal updater url taken from the Scientiamobile Customer
Vault. You may configure the periodicity (frequency) you would like for update checks, choosing from two
values: Daily and Weekly (the default value is Daily). Use logpath to set updater log path where you will
find detailed logs about the updater activity

<wurfl>
 <mainFile path="~/App_Data/wurfl.zip" />
 <updater url="https://data.scientiamobile.com/xxxxx/wurfl.zip" frequency="WURFL_UPDATER_FREQ_DAILY" log
path="~/App_Data/updater.log"/>
</wurfl>

The frequency and logpath parameters are not mandatory.

IMPORTANT - Decommissioning of WurflMatchMode options

Prior to version 1.9 of the API, users could choose between WurflMatchMode.Performance
and WurflMatchMode.Accuracy engine optimization options. These options had been
introduced years ago to manage the behavior of certain web browsers and their tendency to
present "always different" User-Agent strings that would baffle strategies to cache similar
WURFL queries in memory.
As the problem has been solved by browser vendors, the need to adopt this strategy has
diminished and ultimately disappeared (i.e. there was no longer much to be gained with the

http://en.wikipedia.org/wiki/Cache_algorithms#Least_Recently_Used

performance mode in most circumstances) and ScientiaMobile elected to "remove" this
option to simplify configuration and go in the direction of uniform API behavior in different
contexts.

Customers who may find themselves in the unlikely situation of having to analyze significant
amounts of legacy web traffic, may still enable the old WurflMatchMode.Performance
behavior by set WurflMatchMode.FastDesktopBrowserMatch in their configuration.

Please note that users with the old WurflMatchMode.Performance target engine will not
receive an error.
The old behavior will not be triggered, though. The WurflMatchMode.Default target
(corresponding to the old WurflMatchMode.Accuracy) will be used instead.

© 2024 ScientiaMobile Inc.

All Rights Reserved.

NOTICE: All information contained herein is, and remains the property of ScientiaMobile Incorporated and
its suppliers, if any. The intellectual and technical concepts contained herein are proprietary to
ScientiaMobile Incorporated and its suppliers and may be covered by U.S. and Foreign Patents, patents in
process, and are protected by trade secret or copyright law. Dissemination of this information or
reproduction of this material is strictly forbidden unless prior written permission is obtained from
ScientiaMobile Incorporated.

	"The first step in a great mobile experience"
	INFUZE CSHARP MODULE USER GUIDE
	Support
	Update Notifications

	WURFL InFuze Module for C# : User Guide
	Installing libwurfl
	Getting Started
	Console Application Usage
	ASP.NET Web Application Usage

	IMPORTANT - Decommissioning of WurflMatchMode options

