"The first step in a great mobile experience”

scientiamobile

INFUZE NGINX MODULE USER GUIDE

Support

The ScientiaMobile Enterprise Support Portal is open to all WURFL users, both commercial license holders
and evaluation users. It represents the combined knowledge base for the WURFL community. Commercial
licensees are invited to post questions in the forum using the account to which their licenses are

associated. This may mean faster handling of those posts by ScientiaMobile's personnel.

For commercial license holders, there are tiered support levels to address a variety of business support
needs. After logging into your account, commercial licensees with support options can access the

Enterprise Support portal to post tickets. These tickets will receive expedited attention.

To inquire about support plans, use ourLicense Inquiry or our General Inquiry form.

Update Notifications

If you would like to be notified of our APl updates, major data updates, and other technical changes,

please subscribe to our ScientiaMobile Announcements list

. . . Copyright © 2026 ScientiaMobile, all rights reserved. WURFL
SCIentIamOblle Cloud, WURFL OnSite, WURFL and, InFuze WURFL InSight
ienti bil and respective logos are trademarks of ScientiaMobile.
lll_vg\llv_\'l_.ic;%g.?{\a%ésebcom Apache is the trademark of the Apache Software
E-mail: sales@scientiamobile.com Foundation. NGINX is the trademark of Nginx Software Inc.

Varnish is the trademark of Varnish Software AB

WURFL InFuze Module for NGINX: User Guide

https://support.scientiamobile.com/hc/en-us
https://support.scientiamobile.com/hc/en-us
https://www.scientiamobile.com/inquiry
https://www.scientiamobile.com/contact
https://www.scientiamobile.com/page/enewsletter

This document is aimed at developers and system administrators who intend to install and configure the

WURFL InFuze module for NGINX on Unix, Linux, and other Unix-based systems.

If you are using NGINX Plus, please see the documentation for our NGINX Plus modulehere.

Note: Unlike NGINX Plus, you will still need to compile and link the NGINX module.

Installing libwurfl

In order for the Module to work it iSESSENTIAL that the libwurfl library is installed on your system.

libwurfl is provided in your Customer Vault/FileX.

If you have not already installed libwurfl, instructions can be foundhere. Release notes for each API can

be found here.

WARNING

SINCE MODULE VERSION 1.8.4.1 YOU NEED TO ADD A wurfl_enable on; COMMAND
TO THE http section OF YOUR CONFIGURATION FILE,

OTHERWISE THE WURFL MODULE WILL NOT BE LOADED. THIS CHANGE IS PART OF
A FEATURE ALIGNMENT, NECESSARY FOR ENTERPRISE USERS OF NGINX.

Build WURFL Module

We provide an installation script vurfl_nginx_mod_setup.sh) which automatically installs the NGINX
server and the WURFL NGINX module.
We strongly advise use of this script to quickly build NGINX with the WURFL module.

Execute wurfl_nginx_mod_setup.sh, specifying the NGINX version as the first script parameter A.B.C), and

WURFL version as the second parameter (W.X.Y.Z):

$ chmod +x ./wurfl_nginx_mod_setup.sh
$./wurfl_nginx_mod_setup.sh A.B.C W.X.Y.Z

Tip: Since NGINX 1.9.11, dynamic modules are supported. For WURFL NGINX module
versions 1.8.1.0 and greater, you can choose to build it as a dynamic module or embedded
in NGINX. If you want to build WURFL module as an NGINXDynamic module, edit the
wurfl_nginx_mod_setup.sh file, uncomment the line ##./configure --with-debug --with-
threads --with-cc-opt=-Wno-error --add-dynamic-module=../src and comment the line
.Jconfigure --with-debug --with-threads --with-cc-opt=-Wno-error --add-module=../src

Tip: By default, NGINX will be installed in/usr/local/nginx, which, although a good place,
means that the main NGINX binary will be found in /usr/local/nginx/sbin/nginx. Have a
look at the Install Options page of the NGINX wiki for full details.

Tip: For significant performance enhancement, you might want to consider reinstalling PCRE
with "just-in-time compilation®”, and then edit the wurfl_nginx_mod_setup.sh file adding --
with-pcre-jit option to your./configure call : ./configure --with-pcre-jit --with-debug --with-
threads.

https://www.nginx.com/resources/admin-guide/installing-nginx-plus/
https://docs.scientiamobile.com/documentation/infuze/infuze-c-api-user-guide
https://docs.scientiamobile.com/documentation/changelog/infuze-api-change-log
http://wiki.nginx.org/NginxInstallOptions

Tip: If you choosed to build mod_wurfl as an NGINX Dynamic module, you should find the
ngx_http_wurfl_ module.so file in /usr/local/nginx/sbin/nginx/modules.

WURFL Data Snapshot

To perform lookups, you will need a copy of your WURFL data snapshot (also referred to as thewurfl.xml).
While there is one included in the release package, it is intended to be a sample and will not contain all of
your licensed capabilities. Your licensed WURFL data snapshot can be accessed by following these

directions.

Configuration Guide

Below is a sample nginx.conf configuration file for WURFL setup. Please refer to the Module Command
Table below which explains each element in detail (Table 1), their parameters, constraints, and default

recommended settings.
...

-- Uncomment this if you are using NGINX Plus

-- or you compiled WURFL module with --add-dynamic-module (WURFL API version 1.8.1.0 or above / NGINX OSS
1.9.11 or above).

#load_module modules/ngx_http_wurfl_module.so;

..

http {
...

-- Command to enable WURFL module. Since WURFL module version 1.8.4.1, WURFL module is DISABLED BY
DEFAULT.

-- Used to switch on/off WURFL module; if set 'off', NGINX will ignore all wurfl_* configuration.

-- If WURFL module is disabled, NGINX variables used to handle WURFL detection results (i.e: $wurfl_id , $wur
fl_cap_is_smarttv...) are still valid but their values will be "empty string".

-- Valid values are on/off. Default value is off.

wurfl_enable on;

-- WURFL root definition, one per config. User MUST specify this path in order to make WURFL engine correctl
y start.
wurfl_root /usr/share/wurfl/wurfl.zip;

-- WURFL Updater allows for seamless update of the WURFL Engine with new data downloaded from Scientia
Mobile.

-- Updater configuration must be done after wurfl_root.

-- WURFL file should be either .zip or .xml.gz and match the wurfl_root file type.

-- Apply the wurfl_updater by setting your personal updater URL from the ScientiaMobile Customer Vault. If y
our license is expired, NGINX won't start with the Updater configured.

-- Valid values for Updater's checking frequency (how often the updater checks for any new WURFL data file

-- to be downloaded and used by the engine) are DAILY or WEEKLY.

-- Updater log file (wurfl-updater.log) will be located in the "wurfl_root" folder. The folder and wurfl.zip file sho
uld be writable, and a wurfl.zip file must already be present in order for the Updater to determine whether or not i
t has to pull an update.

-- by an NGINX process

#wurfl_updater https://data.scientiamobile.com/xxxxx/wurfl.zip DAILY;

-- WURFL patches definition (as much as needed, patches will be applied in the same order as specified in thi
s conf file)

#wurfl_patch /path/to/patchl.xml;

#wurfl_patch /path/to/patch2.xml;

#wurfl_patch /path/to/patch3.xml;

Increase the variable hash size
variables_hash_max_size 1024;
variables_hash_bucket size 1024;

-- WURFL cache: one of the following
wurfl_cache_Iru 100000;
#wurfl_cache_null;

-- WURFL properties (formerly "WURFL default variables")

https://docs.scientiamobile.com/guides/wurfl-snapshot-generator

-- The wurfl_request_property <property name>; command generates a $<property_name> variable
-- that can be used for header injection
-- Since WURFL API version 1.8.0.0, WURFL default variables except "wurfl_id" are no longer injected by defau

-- and have to be explicitly specified.
#wurfl_request_property wurfl_root_id;
#wurfl_request_property wurfl_isdevroot;
#wurfl_request_property wurfl_useragent;
#wurfl_request_property wurfl_info;
#wurfl_request_property wurfl_api_version;
#wurfl_request_property wurfl_last_load_time;
#wurfl_request_property wurfl_normalized_useragent;

-- WURFL user requested static capabilities (as an example, this is not a complete list)

-- The wurfl_request_capability <capability_name>; command generates a $wurfl_cap_<capability nhame> va
riable

-- that can be used for header injection

#wurfl_request_capability is_tablet;

#wurfl_request_capability is_wireless_device;

-- WURFL user requested virtual capabilities (as an example, this is not a complete list).
-- Since WURFL API version 1.7.1.0, virtual capabilities are no longer injected by default
-- and have to be explicitly specified.

#wurfl_request_capability advertised_device_os;

#wurfl_request_capability is_android;

...

server {

...

-- WURFL injection rules

#

-- The following rule lists define which urls hasn't/has to be injected with wurfl data.
#

-- The urls will be processed in this manner:

#

-- Check if a wurfl_do_not_process_url regex matches the url. If yes, the url
-- itself will not be injected and no further checks will be made

-- If no wurfl_do_not_process_url match, check if a wurfl_process_url regex
-- matches the url. If yes, the url itself will be injected

#

-- The fallback behaviour in case the url doesn't match any

-- wurfl_do_not_process_url/wurfl_process_url rule is:

-- INJECTION if the list of wurfl_process_url is empty

-- NO INJECTION if the list of wurfl_process_url is not empty

#

#

---- Black list: defines which urls hasn't to be injected with wurfl data
---- syntax: wurfl_do_not_process_url <url regex> <rule name>

#

wurfl_do_not_process_url .*¥\.(gif|jpeg|png|css) "Static contents";

wurfl_do_not_process_url .*\/img\/.* "All in img folder;

#

#

---- White list: defines which urls has to be injected with wurfl data
---- syntax: wurfl_process_url <url regex> <rule name>

#

wurfl_process_url .*\.(php|php4|php5) "Php scripts";

wurfl_process_url .*¥\.(jsp|asp) "Jsp/Asp scripts";

-- Trace wurfl injections (default value = off)

-- The log format is:

-- WURFL: Server <server name> - Whitelist hit - resource: <url> - regex: <url regex> (rule name:<rule n
ame>)

-- WURFL: Server <server name> - Blacklist hit - resource: <url> - regex: <url regex> (rule name:<rule na
me>)

-- <server name> is the value of server_name property, or, if empty, a number indicating

-- which server section the log is relative to

#

wurfl_log_header _injection on;

...

Example of uses with PHP FastCGlI (Note: PHP is not a requirement!)

location ~ \.php$ {
root html;
fastcgi_pass 127.0.0.1:9000;
fastcgi_index index.php;
fastcgi_param SCRIPT_FILENAME /var/www$fastcgi_script_name;
include fastcgi_params;

HHH######H#H#H## WURFL data passed to fastcgi PHP scripts

#

#H######4# WURFL properties (formerly "WURFL default variables"): add here to make them available to
fastcgi PHP scripts.

#H#AH#H####H# Property "wurfl_id" is injected by default (see http section) and could be specified here

fastcgi_param WURFL_ID $wurfl_id;

#fastcgi_param WURFL_ROOT_ID $wurfl_root_id;

#fastcgi_param WURFL_ISDEVROOT $wurfl_isdevroot;

#fastcgi_param WURFL_ORIGINAL_USERAGENT $wurfl_useragent;
#fastcgi_param WURFL_INFO $wurfl_info;

#fastcgi_param WURFL_API_VERSION $wurfl_api_version;

#fastcgi_param WURFL_LAST_LOAD_TIME $wurfl_last_load_time;
#fastcgi_param WURFL_NORMALIZED_USERAGENT $wurfl_normalized_useragent;
#

#

######## WURFL capabilities: headers injected by into Request by wurfl engine.

#H####### Add here to make them available to fastcgi PHP scripts.

#

specify the static capabilities needed in webapp (as an example, this is not a complete list)
#fastcgi_param WURFL_IS TABLET $wurfl_cap_is_tablet;

#fastcgi_param WURFL_IS_WIRELESS_DEVICE $wurfl_cap_is_wireless_device;

#

specify the virtual capabilities needed in webapp (as an example, this is not a complete list)
#fastcgi_param WURFL_ADVERTISED_DEVICE_OS $wurfl_cap_advertised_device_os;
#fastcgi_param WURFL_IS_ANDROID $wurfl_cap_is_android;

Important Note

If you are using NGINX with the builtin wurfl updater make sure that the folder that contains the wurfl.zip
file is writable to all. Even if nginx starts as root, worker child processes might run as unpriviliged user
("nobody" by default) and this prevents workers engine updater to correctly update the wurfl.zip file

during normal operations.

WURFL NGINX Module command table

The following table shows directives which can be applied to configure and use the WURFL NGINX Module.

http wurfl_enable Enable/Disable the
WURFL module.
Since version
1.8.4.1, the WURFL
module is disabled
by default and will
need to be enabled:
wurfl_enable on;
Otherwise all WURFL
commands will be
ignored and the
WURFL module will
not be loaded.
Possible values:
on/off. Default value:
off.

Section Description Availability

http wurfl_root Defines the location 1.4
(path) of the WURFL
data file.
wurfl_updater Allows seamless 1.8.3

updates of the
WURFL Engine with
new data
downloaded from
Scientiamobile. This
directive must follow
wurfl_root.

It takes two
parameters:

* the data url (taken
from your personal
Scientiamobile Vault
account, choosing
between two data
file types: .zip or
.xml.gz)

Take care that
wurfl_root file type
and wurfl_updater
data url file types
match so you may
need to change the
wurfl_root file type
accordingly.

Please note that in
the case your license
is expired, NGINX
won't start with
Updater configured.
e the updater
checking frequency
(how often the
updater checks for
any new WURFL data
file to be
downloaded and
used by the engine)
which you can
choose between
DAILY and WEEKLY.
In order to let the
Updater perform its
activities both the
wurfl_root folder and
file must be writable
by NGINX.

The wurfl-
updater.log file in
wurfl_root folder will
contains details on
Updater activity.

Section

wurfl_patch

wurfl_target_defau
It

or
wurfl_target_fast_
desktop_browser_
match

or
wurfl_target_perfo
rmance

or
wurfl_target_accur
acy

wurfl_cache_lru
or
wurfl_cache_null

Description

Adds one or more 1.4
custom patch files to

the WURFL

repository.

These 1.4

configuration
options are
deprecated and
will be removed in
a future release.

In order to increase 1.4
performance while
processing real HTTP
traffic, we suggest
setting up a LRU
cache. The LRU
caching strategy will
speed up lookup
operations on
processed User
Agents by keeping
them in an LRU map.
By default the cache
will be set to 30000
entries which
accounts for 7 to 10
MB of additional
memory usage.
Specific concerns
regarding memory
usage apart, users
are advised to size
their cache
generously (100,000
or more) to increase
performance. For
more information,
please see LRU
Cache Mechanism.

Availability

https://en.wikipedia.org/wiki/Cache_replacement_policies#Least_recently_used_(LRU)

Section

wurfl_request_cap
ability

wurfl_useragent_p
riority_override_si
deloaded_browser
_useragent

or
wurfl_useragent_p
riority_use_plain_u
seragent

wurfl_request_pro
perty

Description

Enables injection of 1.4
WURFL Static
Capabilities/Virtual
Capabilities in the
HTTP request
headers with your
specified
parameter(s).
Syntax:
wurfl_request_cap
ability <static
capability/virtual
capability name>
You can find the
complete list of
WURFL Static
Capabilities and
WURFL Virtual
Capabilities here.

If a Static
Capability/Virtual
Capability is
specified in a
wurfl_request _capabi
lity command,
WURFL NGINX
module set a NGINX
variable whose name
is

wurfl_cap_

These 1.5.2
configuration

options are

deprecated and

will be removed in

a future release.

Enables injection of 1.8
WURFL Properties
(see section WURFL
Properties below) in
the HTTP request
headers.

Syntax:
wurfl_request_pro
perty <variable
name>

Not mandatory.

Availability

https://www.scientiamobile.com/capabilities

Section

server

wurfl_do_not_proc
ess_url

Description

A regular expression 1.8
defining which URLs
hasn't to be injected
with wurfl data.
Syntax:
wurfl_do_not_proc
ess_url <url
regex> <rule
name>

Not mandatory.

You can specify
more than one
wurfl_do_not_proces
s_url

The URLs will be
processed in this
manner:

Check if a
wurfl_do_not_proces
s_url regex matches
the URL.

e If yes, the URL
itself will not be
injected and no
further checks will
be made.

* If no, check if a
wurfl_process_url
regex matches the
url.

e o |f yes, the url
itself will be injected
The fallback
behaviour in case
the url doesn't
match any
wurfl_do_not_proces
s_url/wurfl_process_
url rule is:

* INJECTION if the
list of
wurfl_process_url is
empty

* NO INJECTION if
the list of
wurfl_process_url is
not empty

Availability

Section Description Availability

wurfl_process_url A regular expression 1.8
defining which URLs
has to be injected
with wurfl data.
Syntax:
wurfl_process_url
<url regex> <rule
name>
Not mandatory.

You can specify
more than one
wurfl_process_url.
The urls will be
processed in this
manner:

Check if a
wurfl_do_not_proces
s_url regex matches
the URL.

e If yes, the URL
itself will not be
injected and no
further checks will
be made.

* If no, check if a
wurfl_process_url
regex matches the
URL.

e o |f yes, the URL
itself will be injected
The fallback
behaviour in case
the URL doesn't
match any
wurfl_do_not_proces
s_url/wurfl_process_
url rule is:

* INJECTION if the
list of
wurfl_process_url is
empty

* NO INJECTION if
the list of
wurfl_process_url is
not empty

wurfl_log_header_i Enable/disable 1.8
njection logging of occurred
injections.
You can choose
between on/off
Not mandatory.
(default value is off)

WURFL Properties

The WURFL NGINX module sets some useful convenience NGINX variables to retrieve information
regarding the currently active WURFL configuration.

These variables are automatically calculated and are injected in HTTP requests if specified in a

wurfl_request_property command.
Please note that the wurfl_id variable is injected by default so you don't have to sepcify it in a

wurfl_request_property command.

WURFL Properties Table

wurfl_id Contains the device ID of the 1.4
matched device. It is injected
by default so you don't have
to specify it in a
wurfl_request_property
command

wurfl_root_id Contains the device root ID of 1.4
the matched device.

wurfl_isdevroot Tells if the matched device is 1.4
a root device. Possible values
are "TRUE" or "FALSE"

wurfl_useragent The original useragent 151
coming with this particular
web request

wurfl_api_version Contains a string 151
representing the currently
used libwurfl API version

wurfl_engine_target This property is 1.5.1
deprecated and will be
removed in a future
release.

wurfl_info A string containing 151
information on the parsed
WUREFL data file and its full
path

wurfl_last_load_time Contains the UNIX timestamp 151
of the last time WURFL has
been loaded successfully.

wurfl_normalized_useragent The normalized useragent. 1.5.1.3

wurfl_useragent_priority This property is 1.5.2
deprecated and will be
removed in a future
release.

Running NGINX Web Server

Once you have configured NGINX and are ready to test the installion by launching the webserver, use the

following command:

sudo /usr/local/nginx/sbin/nginx

Tip: This guide only instructs you on how to start and stop NGINX manually. There are many
different online guides that shows how to build init scripts for NGINX, here is an example
site.

To see if NGINX is running, go to your server's IP address. You should see a 'welcome to NGINX' message,
indicating that NGINX is installed. Alternatively, check to see if the NGINX process is running by executing

this command:
sudo ps aux | grep nginx
To stop the NGINX service manually, you can take advantage of thepid file to identify process ID.

sudo kill *cat /usr/local/nginx/logs/nginx.pid"
Verify WURFL Installation

At the end of the installation procedure, your NGINX web server will be enhanced with the new WURFL API
capabilities to support a variety of use-cases that rely on your NGINX instance becoming aware of device
information. Among other things, NGINX will augment HTTP requests with new headers such as: X-Wurfl-
Is-Tablet, X-Is-Full-Desktop and the relative values as defined in WURFL. This will enable services
deployed downstream to take advantage of device detection in the simplest way possible (getHeader()

and similar).

Note: Pre-selected capabilities and header names are shown for this example (the actual
choice of header names is configurable).

The WURFL module for NGINX enables organizations to leverage device and browser information within
the very tools, frameworks and programming languages that they have previously elected to use. For
example, assuming that a RIM BlackBerry 8830 device requests a PHP phpinfo() page (assuming that PHP
is installed), the following information would be returned by the system thanks to the WURFL NGINX

module:

System Linux ip-10-252-59-108 3.2.0-31~virtual #50-Ubuntu SMP Fri Sep 7 16:36:36
UTC 2012 x86_64
PHP Variables
_SERVER["WURFL_ROOT_ID"] !ackbmﬁ:i()ﬂ_m1 !
_SERVER["WURFL_ID"] 'ﬂackbmm_veﬂ_ﬁm 037/JI
_ SERVER["WURFL_ISDEVROOT"] FAL
_SERVER["WURFL_CAP_BRAND_MNAME"]|RIM
__SERVER["GATEWAY_INTERFACE"] CGIM.1
_SERVER["SERVER_SOFTWARE"] nginx

PHP variables now include HTTP headers that contain device information. This information can be
leveraged by downstream applications to tailor the content to the capabilities of the requesting device.
For example, assuming we choose the X-Wurfl-* notation for the environment variables or HTTP headers,
the following PHP code can be used to determine if the requesting device is a tablet:

/] PHP

if ($_SERVERI['X-Wurfl-Is-Tablet'] == 'true') {
//Do whatever makes sense for a tablet

http://www.rackspace.com/knowledge_center/article/ubuntu-and-debian-adding-an-nginx-init-script

}

Java, ASP.NET, Perl, Python and everything that can run in a CGI environment can take advantage of the

functionality.

Running PHP Script on NGINX

In order to run the example script above, you will need to installPHP FastCGl. It is highly recommended
that you use PHP-FPM (FastCGl Process Manager) for its features and ease of installation. Use the

following command to install the latest PHP-FPM package:

sudo apt-get install php5-fpm

Then run PHP5-FPM in the background, using the followinginit.d script to start the process:

sudo /etc/init.d/php-fpm start

At this point, we are ready to create a simple test script. Test the capabilities filters with the following PHP
script test.php to put in/usr/local/nginx/html:

//PHP - test.php
phpinfo(INFO_ENVIRONMENT);

The test.php script will return an extended result of what can be seen irFigure 1. You can use any kind of

mobile device to load the site and see their unique device capabilities.

© 2026 ScientiaMobile Inc.
All Rights Reserved.

NOTICE: All information contained herein is, and remains the property of ScientiaMobile Incorporated and
its suppliers, if any. The intellectual and technical concepts contained herein are proprietary to
ScientiaMobile Incorporated and its suppliers and may be covered by U.S. and Foreign Patents, patents in
process, and are protected by trade secret or copyright law. Dissemination of this information or
reproduction of this material is strictly forbidden unless prior written permission is obtained from

ScientiaMobile Incorporated.

	"The first step in a great mobile experience"
	INFUZE NGINX MODULE USER GUIDE
	Support
	Update Notifications

	WURFL InFuze Module for NGINX: User Guide
	Installing libwurfl
	WARNING
	Build WURFL Module
	WURFL Data Snapshot
	Configuration Guide
	Important Note
	WURFL NGINX Module command table
	WURFL Properties
	Running NGINX Web Server
	Verify WURFL Installation
	Running PHP Script on NGINX

