
"The first step in a great mobile experience"

INFUZE VARNISH MODULE USER GUIDE

Support

The ScientiaMobile Enterprise Support Portal is open to all WURFL users, both commercial license holders
and evaluation users. It represents the combined knowledge base for the WURFL community. Commercial
licensees are invited to post questions in the forum using the account to which their licenses are
associated. This may mean faster handling of those posts by ScientiaMobile's personnel.

For commercial license holders, there are tiered support levels to address a variety of business support
needs. After logging into your account, commercial licensees with support options can access the
Enterprise Support portal to post tickets. These tickets will receive expedited attention.

To inquire about support plans, use our License Inquiry or our General Inquiry form.

Update Notifications

If you would like to be notified of our API updates, major data updates, and other technical changes,
please subscribe to our ScientiaMobile Announcements list

www.scientiamobile.com
Tel +1.703.310.6650
E-mail: sales@scientiamobile.com

Copyright © 2025 ScientiaMobile, all rights reserved. WURFL
Cloud, WURFL OnSite, WURFL and, InFuze WURFL InSight
and respective logos are trademarks of ScientiaMobile.
Apache is the trademark of the Apache Software
Foundation. NGINX is the trademark of Nginx Software Inc.
Varnish is the trademark of Varnish Software AB

WURFL InFuze Module for Varnish: User

https://support.scientiamobile.com/hc/en-us
https://support.scientiamobile.com/hc/en-us
https://www.scientiamobile.com/inquiry
https://www.scientiamobile.com/contact
https://www.scientiamobile.com/page/enewsletter

Guide
This document is aimed at developers and system administrators who intend to install and configure the
WURFL InFuze Module for Varnish-Cache on Unix, Linux, and other Unix-based systems such as FreeBSD.
In the rest of the documentation, we will refer to the module as the WURFL VMOD (WURFL Varnish
Module).

Installing libwurfl

In order for the Module to work it is ESSENTIAL that the libwurfl library is installed on your system.
libwurfl is provided in your Customer Vault/FileX.

If you have not already installed libwurfl, instructions can be found here. Release notes for each API can
be found here.

WURFL Varnish Module availability

The WURFL Varnish module is included in the release package for multiple major versions of Varnish
Cache. To see which versions are currently supported, please refer to the release package contents.

Installing WURFL Varnish Module

You may already have an instance of Varnish Cache running on your system. In this case, we recommend
that you stop any running Varnish Cache instance and check if you have the correct version of Varnish
Cache installed.

Warning: Some older Linux distributions, such as Fedora 15, may include outdated Varnish
libraries that are incompatible with the WURFL VMOD. Please ensure you are running a
supported version of Varnish Cache before installing this module.

Installing the WURFL Varnish Module on Ubuntu

You can get the Varnish Cache software from packagecloud.io, chosing the desired repo and then
following the installation instructions related to deb packages.

Once you have obtained the WURFL Varnish module deb package from ScientiaMobile, you can install it
with:

sudo dpkg -r varnish-mod-wurfl
sudo dpkg -i varnish-mod-wurfl-x.y.z.0.varnish-5.2.1.x86_64.deb

WURFL VMOD packages are versioned to match the Varnish Cache versions they support. For example,
the package shown above is intended for Varnish Cache 5.2.1. Be sure to install the WURFL VMOD
package that corresponds to your specific Varnish Cache version.

WURFL Varnish Module Installation Folder
Please note that the WURFL Varnish module deb package will install the module .so file in
/usr/lib/varnish/vmods/ and will try to create symbolic links in /usr/lib/x86_64-linux-
gnu/varnish/vmods and/or /usr/local/lib/varnish/vmods.
If your Varnish installation uses a different directory for VMODs, you may encounter the
following error on startup:
..../vmods/libvmod_wurfl.so: open shared object file: No such file or directory.
To resolve this, please manually create a symbolic link to
/usr/lib/varnish/vmods/libvmod_wurfl.so in your Varnish VMODs folder.

https://docs.scientiamobile.com/documentation/infuze/infuze-c-api-user-guide
https://docs.scientiamobile.com/documentation/changelog/infuze-api-change-log
https://packagecloud.io/varnishcache

Install WURFL Varnish Module on RedHat/Fedora/CentOS

You can get the Varnish Cache software from packagecloud.io, chosing the desired repo and then
following the installation instructions related to rpm packages.

Once you have downloaded the WURFL Varnish module rpm package from ScientiaMobile, you can install
it with:

sudo rpm -e varnish-mod-wurfl
sudo rpm -i varnish-mod-wurfl-x.y.z.0.varnish-5.2.1.x86_64.rpm

WURFL VMOD packages are versioned to match the Varnish Cache versions they support. For example,
the package shown above is intended for Varnish Cache 5.2.1. Be sure to install the WURFL VMOD
package that corresponds to your specific Varnish Cache version.

WURFL Varnish Module Installation Folder
Please note that the WURFL Varnish module deb package will install the module .so file in
/usr/lib/varnish/vmods/ and will try to create symbolic links in /usr/lib64/varnish/vmods
and/or /usr/local/lib/varnish/vmods.
If your Varnish installation uses a different directory for VMODs, you may encounter the
following error on startup:
..../vmods/libvmod_wurfl.so: open shared object file: No such file or directory.
To resolve this, please manually create a symbolic link to
/usr/lib/varnish/vmods/libvmod_wurfl.so in your Varnish VMODs folder.

The installation process is now complete. Make sure to check the Configuration Guide and WURFL Varnish
Module Examples sections to verify that everything was installed correctly.

Varnish Tuning
Starting libwurfl v1.8.3.1, the Varnish run time parameter thread_pool_stack needs to be
tuned to meet WURFL requirements.
Its value should be changed to at least 96k by executing the varnishd daemon with the
following command: varnishd -p thread_pool_stack=96k.
For Varnish versions prior to 4.0, please use varnishd -p thread_pool_stack=163840 instead.

WURFL Data Snapshot

To perform lookups, you will need a copy of your WURFL data snapshot (also referred to as the wurfl.xml).
While there is one included in the release package, it is intended to be a sample and will not contain all of
your licensed capabilities. Your licensed WURFL data snapshot can be accessed by following these
directions.

Configuration Guide

Varnish utilizes Varnish Configuration Language (VCL), a domain-specific language that can be used to
define HTTP-request handling and media caching policies for the Varnish-Cache HTTP accelerator. For
more information on VCL, please check the Varnish 5 VCL, Varnish 4.1 VCL, Varnish 4 VCL or the Varnish 3
VCL online documentation as well as other examples of VCL Usage.

Shown below is an example of a varnish.sample.vcl configuration file for WURFL setup in Varnish 5.
Please refer to the directives guide which explains each element in detail (Table 1), their parameters,
constraints, and default recommended settings. In order to test the correct installation of the WURFL
Varnish module, you can use the VCL script located in /usr/share/wurfl/varnish.sample.vcl:

vcl 4.0;

import wurfl;

https://packagecloud.io/varnishcache
https://docs.scientiamobile.com/guides/wurfl-snapshot-generator
https://www.varnish-cache.org/docs/5.0/reference/vcl.html
https://www.varnish-cache.org/docs/4.1/reference/vcl.html
https://www.varnish-cache.org/docs/4.0/reference/vcl.html
https://www.varnish-cache.org/docs/3.0/reference/vcl.html
https://www.varnish-cache.org/trac/wiki/VCLExamples

import std;

backend default {
 .host = "127.0.0.1";
 .port = "8080";
}

sub vcl_init {
 ### WURFL root definition. User MUST specify this path in order to make WURFL engine correctly start.
 wurfl.set_root("/usr/share/wurfl/wurfl.zip");

 ### WURFL Updater allows for seamless updates of the WURFL engine with new data downloaded from Scienti
amobile.
 ### Updater configuration must be done after wurfl.set_root
 ### WURFL file should be either .zip or .xml.gz and match wurfl.set_root file type
 ### Put your personal updater URL taken from the Scientiamobile customer Vault.
 ### Valid values for the updater checking frequency (how often the updater checks for any new WURFL data fi
le
 ### to be downloaded and used by the engine) are DAILY,WEEKLY
 ### Updater log file (wurfl-updater.log) may be found in "wurfl.set_root" folder. The folder and wurfl.zip file (w
hich must already be present for the updater to work, should be writable by Varnish
 #wurfl.updater("https://data.scientiamobile.com/xxxxx/wurfl.zip","DAILY");
 #wurfl.updater("https://data.scientiamobile.com/xxxxx/wurfl.zip","WEEKLY");

 ### WURFL patches definition (as much as needed, patches will be applied in the same order as specified).
 #wurfl.add_patch("/path/to/patch1.xml");
 #wurfl.add_patch("/path/to/patch2.xml");

 ### WURFL cache: one of the following
 wurfl.set_cache_provider_lru(100000);
 #wurfl.set_cache_provider_none();

 wurfl.load();

 ### WURFL Updater startup. Must be done after wurfl.load
 ### With wurfl.updater_start the updater will execute an asynchronous check DAILY or WEEKLY (depending on
 wurfl.updater parameters)
 ### With wurfl.updater_runonce the updater will run only once executing a synchronous check
 # wurfl.updater_start();
 # wurfl.updater_runonce();

 if (wurfl.error()) {
 std.syslog(3, wurfl.error());
 return (fail);
 }
}

sub vcl_miss {
 ### Print requested static capabilities
 std.syslog(0, wurfl.get_capability("is_console"));

 ### Print useful WURFL setup information
 std.syslog(0, wurfl.get_api_version());
 std.syslog(0, wurfl.get_wurfl_info());
 std.syslog(0, wurfl.get_last_load_time());

 ### Print some virtual capabilities values
 std.syslog(0, wurfl.get_virtual_capability("advertised_browser"));
 std.syslog(0, wurfl.get_virtual_capability("advertised_browser_version"));
 std.syslog(0, wurfl.get_virtual_capability("advertised_device_os"));
 std.syslog(0, wurfl.get_virtual_capability("advertised_device_os_version"));
 std.syslog(0, wurfl.get_virtual_capability("is_largescreen"));
 std.syslog(0, wurfl.get_virtual_capability("is_app"));

 return(fetch);
}

sub vcl_pipe {
 return(pipe);
}

sub vcl_pass {
 return(pass);
}

Available Varnish Module functions list

Syntax Description Availability

set_root(string) Defines the location (path) of
the WURFL data file.

1.4

updater(string, string) Allows seamless update of
WURFL engine with new data
downloaded from
Scientiamobile. A call to
set_root must precede it.
It takes two parameters:
• the data url (taken from
your personal Scientiamobile
Vault account, choosing
between two data file types:
.zip or .xml.gz)
Take care that set_root file
type and updater data url file
type match so you may need
to change the set_root file
type accordingly.
• the updater checking
frequency (how often the
updater checks for any new
WURFL data file to be
downloaded and used by the
engine) which you can
choose between DAILY and
WEEKLY.
In order to let the Updater
perform its activities both the
set_root folder and file must
be writable by varnish.
The wurfl-updater.log file in
set_root folder will contains
details on Updater activity.

1.8.3

add_patch(string) Adds one or more custom
patch files to the WURFL
repository.

1.4

set_engine_target_default()
or
set_engine_target_fast_deskt
op_browser_match()
or
set_engine_target_high_perfo
rmance()
or
set_engine_target_high_accu
racy()

These configuration
options are deprecated
and will be removed in a
future release.

1.4

set_cache_provider_lru()
or
set_cache_provider_none(int
)

In order to increase
performance while
processing real HTTP traffic,
we suggest setting up an LRU
cache. The LRU caching
strategy will speed up lookup
operations on processed User
Agents by keeping them in
an LRU map. By default the
cache will be set to 30000
entries which accounts for 7
to 10 MB of additional
memory usage. Specific
concerns regarding memory
usage apart, users are
advised to size their cache
generously (100,000 or
more) to increase
performance. For more
information, please see LRU
Cache Mechanism.

1.4

add_requested_capability(
string)

Defines one or more WURFL
Static Capabilities to be
loaded into memory run-
time.

1.4

load() Loads WURFL engine and
makes it available to Varnish.

1.4

updater_start() Starts the WURFL Updater
and executes an
asynchronous check DAILY or
WEEKLY (depending on
updater parameters).
A load call must precede it in
order to correctly start the
Updater.

1.8.3

updater_runonce() Runs the WURFL Updater
only once, executing a
synchronous check.
A load call must precede it in
order to correctly start the
Updater.

1.8.3

error() Returns the last WURFL call
error message or empty if no
errors were found.

1.4

const char * get_capability(
string)

Returns the WURFL static
capability value for the
detected device as a zero
terminated ASCII string. If the
static capability is missing,
this function returns 0.

1.4

Syntax Description Availability

http://en.wikipedia.org/wiki/Cache_algorithms#Least_Recently_Used

int get_capability_as_int(
string)

Returns the WURFL static
capability value for the
detected device as an integer
value if the required static
capability exists. If the static
capability is missing, or the
static capability's value is not
a valid integer, this function
returns 0.

1.4.4

bool get_capability_as_bool(
string)

Returns the WURFL static
capability value for the
detected device as a boolean
value if the required static
capability exists. If the static
capability is missing, or the
static capability's value is not
a valid boolean, this function
returns 0.

1.4.4

const char *
get_virtual_capability(string
)

Returns the WURFL virtual
capability value for the
detected device as a zero
terminated ASCII string. If the
virtual capability is missing,
this function returns 0.

1.5.0

bool
get_virtual_capability_as_boo
l(string)

Returns the WURFL virtual
capability value for the
detected device as a boolean
value if the required virtual
capability exists. If the virtual
capability is missing, or the
virtual capability's value is
not a valid boolean, this
function returns 0.

1.5.0

int
get_virtual_capability_as_int(
string)

Returns the WURFL virtual
capability value for the
detected device as an integer
value if the required virtual
capability exists. If the virtual
capability is missing, or the
virtual capability's value is
not a valid integer, this
function returns 0.

1.5.0

const char *
get_original_useragent()

Returns the original
useragent coming with this
particular web request.

1.5.1

const char *
get_normalized_useragent()

Returns the normalized
useragent.

1.5.1.3

const char *
get_api_version()

Returns the currently used
Libwurfl API version.

1.5.1

Syntax Description Availability

const char *
get_engine_target()

This function is
deprecated and will be
removed in a future
release.

1.5.1

const char * get_wurfl_info() Returns a string containing
informations on the parsed
WURFL data file and its full
path.

1.5.1

const char *
get_last_load_time()

Returns the UNIX timestamp
of the last time WURFL has
been loaded successfully.

1.5.1

set_useragent_priority_overri
de_sideloaded_browser_user
agent()
or
set_useragent_priority_use_pl
ain_useragent()

These configuration
options are deprecated
and will be removed in a
future release.

1.5.2

get_useragent_priority_as_str
ing()

This function is
deprecated and will be
removed in a future
release.

1.5.2

Syntax Description Availability

Environment Info and Virtual Capabilities in WURFL Varnish Module

Since virtual capabilities are automatically calculated by WURFL, there are no explicit commands to
request them.

There are some functions used to retrieve the virtual capabilities values and also some useful WURFL
environment configuration information.

Please take a look at the VCL example and the functions table specified above.

WURFL Varnish Module Examples

If you try the following examples, you should restart Varnish each time a change is made.

Example 1:

In this example, we declare the vcl_recv subroutine, which is called when the complete request has been
received and parsed. Its purpose is to decide whether an HTTP request should be served. Thus, certain
conditions should be satisfied prior to serving the request itself. For example, the req object represents a
single request and its parameters can be accessed via "dotted notation".

In our case, we test if the URL of the request is equal to / (root). Moreover we check if the browser runs on
a device which has a resolution height equal to 960 pixels. If both of these conditions are true then we can
use the directive set to assign a specific home page URL (/wide.html) to the request parameter URL.

The wurfl object is accessible after all the required variables have been initialized (see the
varnish.sample.vcl script described before for more info). We can query WURFL for a static capability

value simply by calling the function get_capability(cap_name).

The subroutine vcl_error is called every time we hit an error. At this point, the request has been cached by
Varnish and as a result we have access to the obj object's variables in order to check if some error has
occured.

For example, we can read the status variable, which contains the HTTP response status code returned by
the server, and act accordingly by showing a message to the user which describes the problem or restarts
the transaction to connect to the server.

Please note that, in the subroutine vcl_error, we return the error object to the client, which in turn can take
some further actions.

###
########## Wurfl Static Capability switch example 1 ##############
##
sub vcl_recv {
 if (req.url == "/" && wurfl.get_capability("resolution_height") == "800") {
 set req.url = "/wide.html";
 }
}

sub vcl_error {
 if (obj.status == 750) {
 set obj.http.Location = "/wideversion/";
 set obj.status = 302;
 return(deliver);
 }
}

Example 2:

This example is similar to the previous one and shows how to throw an error explicitly to the client when
both conditions are satisfied. Note that in this case, the request will be discarded by Varnish.

##
########### Wurfl Static Capability switch example 2 #############
##
sub vcl_recv {
 if (req.url == "/" && wurfl.get_capability("resolution_height") == "800") {
 error 750 "Moved Temporarily";
 }
}

sub vcl_error {
 if (obj.status == 750) {
 set obj.http.Location = "/wideversion/";
 set obj.status = 302;
 return(deliver);
 }
}

Example 3:

In this example we call the hash_data() function, which will hash the data passed as parameter. Using the
+ operator, we can concatenate strings and then pass the result to the hash function. In this case, we
consider concatenating the requested URL with the Device ID matched by WURFL.

##
############## Caching only URL + Device ID example 3 ############
Content is cached only if the URL+Device_ID is matching
##
sub vcl_hash {
 hash_data(req.url+req.http.host+wurfl.get_device_id());
 return (hash);
}

You should restart Varnish every time you make a change to the configuration in order to force a reload of

the VCL configuration:

pkill varnishd
varnishd -f /usr/share/wurfl/varnish.sample.vcl

Note: In order to use service varnish start you should set properly all the required
parameters in /etc/sysconfig/varnish.

Note: Due to a Varnish limitation, the only working log file is the syslog. If you want to check
the error messages and other issues> that may have occurred, you should look into
/var/log/messages.

© 2025 ScientiaMobile Inc.

All Rights Reserved.

NOTICE: All information contained herein is, and remains the property of ScientiaMobile Incorporated and
its suppliers, if any. The intellectual and technical concepts contained herein are proprietary to
ScientiaMobile Incorporated and its suppliers and may be covered by U.S. and Foreign Patents, patents in
process, and are protected by trade secret or copyright law. Dissemination of this information or
reproduction of this material is strictly forbidden unless prior written permission is obtained from
ScientiaMobile Incorporated.

	"The first step in a great mobile experience"
	INFUZE VARNISH MODULE USER GUIDE
	Support
	Update Notifications

	WURFL InFuze Module for Varnish: User Guide
	Installing libwurfl
	WURFL Varnish Module availability
	Installing WURFL Varnish Module
	Installing the WURFL Varnish Module on Ubuntu
	Install WURFL Varnish Module on RedHat/Fedora/CentOS
	WURFL Data Snapshot
	Configuration Guide
	Available Varnish Module functions list
	Environment Info and Virtual Capabilities in WURFL Varnish Module
	WURFL Varnish Module Examples

