"The first step in a great mobile experience”

scientiam®bile

ONSITE .NET API

Support

The ScientiaMobile Support Forum is open to all WURFL users, both commercial license holders and evaluation users. It
represents the combined knowledge base for the WURFL community. Commercial licensees are invited to post
questions in the forum using the account to which their licenses are associated. This may mean faster handling of those

posts by ScientiaMobile's personnel.

For commercial license holders, there are tiered support levels to address a variety of business support needs. After
logging into your account, commercial licensees with support options can access the Enterprise Support portal to post

tickets. These tickets will receive expedited attention.

To inquire about support plans, use our License Inquiry or our General Inquiry form.

Update Notifications

If you would like to be notified of our API updates, major data updates, and other technical changes, please subscribe to

our ScientiaMobile Announcements list

https://www.scientiamobile.com/forum/
https://scientiamobile.zendesk.com/home
https://www.scientiamobile.com/inquiry
https://www.scientiamobile.com/contact
https://www.scientiamobile.com/page/enewsletter

Copyright © 2018 ScientiaMobile, all rights reserved. WURFL Cloud,

WURFL OnSite, WURFL and, InFuze WURFL InSight and respective
— . logos are trademarks of ScientiaMobile. Apache is the trademark of

www.scientiamobile.com . ')

Tel +1.703.310.6650 the Apache Software Foundation. NGINX is the trademark of Nginx

E-mail: sales@scientiamobile.com Software Inc. Varnish is the trademark of Varnish Software AB

scientiam®bile

WURFL OnSite .NET API: User Guide

Installation

To enable WURFL on your application you must register for a free account on scientiamobile.com and download the
latest release from your File Manager.

The Wurfl.dll file must be added as a reference to any WURFL project, while the Wurfl. Aspnet.Extensions.dll file must be
referenced only in ASP.NET

projects where you plan to use WURFL. For example, you don't strictly need to reference Wurfl.Aspnet.Extensions.dll if

you're using WURFL from within a Console Application.
Note: As of version 1.8.1.0 a .NET Framework of at least 4.5.2 is required for installation.

In your File Manager you may find a wurfl.zip. The wurfl.zip is a database, or Device Definition Repository (DDR),
that holds data about all the devices known to WURFL and it's fundamental to every WURFL based application.

Note: The WURFL APl is closely tied to the wurfl.zip file. New versions of the wurfl.zip are compatible
with old versions of the API by nature, but the reverse is not true. Old versions of the wurfl.zip are not
guaranteed to be compatible with new versions of the API.

WURFL OnSite .NET API NuGet package

WURFL OnSite .NET API is available as a NuGet package too. To install, use the ScientiaMobile NuGet URL
https://nuget.scientiamobile.com/repository/wurfl-onsite/. To browse from VisualStudio:

1. Go to Tools -> NuGet Package Manager -> Package Manager Settings
2. Then go to Package Sources and add a new Package Source

3. Give the new Package Source a Name and Source URL (https://nuget.scientiamobile.com/repository/wurfl-

onsite/)
4. Next, go to Tools -> NuGet Package Manager -> Package Manager Console and run the following
command:

Install-Package WURFLONSite
5. Once the command is executed, enter your ScientiaMobile account credientials

Getting Started

WURFL OnSite .NET API bases its operations on two main objects:

e a WURFL Manager object implementing the IWNURFLManager interface.

e a Device object implementing the IDevice interface.

The WURFL Manager object should be instantiated only once in your application.

https://filex.scientiamobile.com/user/index#products/onsite
https://filex.scientiamobile.com/user/index#products/onsite
https://nuget.scientiamobile.com/repository/wurfl-onsite/
https://img.imgeng.in/w_auto,900/https://docs.scientiamobile.com/img/nuget1.png
https://img.imgeng.in/w_auto,900/https://docs.scientiamobile.com/img/nuget2.png
https://img.imgeng.in/w_auto,900/https://docs.scientiamobile.com/img/nuget3.png
https://img.imgeng.in/w_auto,900/https://docs.scientiamobile.com/img/nuget4.png
https://img.imgeng.in/w_auto,900/https://docs.scientiamobile.com/img/nuget5.png

The WURFL Manager object offers several methods (among others) for you to gain access to the in-memory
representation of the Device Definition Repository (DDR).

public interface IWURFLManager
{

IDevice GetDeviceForRequest(String userAgent);
IDevice GetDeviceForRequest(HttpRequest request);
IDevice GetDeviceByld(String deviceld);

1
All of these methods return a Device object (implementing the IDevice interface) which represents the matched device

model.

The Device object offers several methods (among others) for you to access the matched device data.

public interface IDevice

{

String GetCapability(String name);

String GetVirtualCapability(String name);
IDictionary<String, String> GetCapabilities();
IDictionary<String, String> GetVirtualCapabilities();
String Id { get; }

}
In the next sections we'll see a sample Console Application as well as an ASP.NET Web based application , using
device detection and accessing WURFL static capabilities and virtual capabilities.

Console Application Usage

In your Console Application project, add the Wurfl.dll assembly as a reference.

Note: Beginning with version 1.8.4, the System.Web assembly must be referenced, even if you are
building a Console Application.

Add a new class named WURFLSimpleTest to your project with the following code.

using WURFL;
using WURFL.Config;

namespace YourNameSpace

{
class WURFLSimpleTest

{

static void Main(string[] args)

{

Create the InMemoryConfigurer object setting the WURFL data file path;

try
{

InMemoryConfigurer configurer = new InMemoryConfigurer()

/documentation/onsite/onsite-Dotnet-api#consoleusage
/documentation/onsite/onsite-Dotnet-api#aspnetusage

.MainFile("PATH_TO_YOUR_WURFL.ZIP");

IWURFLManager manager = null;

Create the WURFL manager once, then lookup the UserAgent, and get the Device-Id, Static Capabilities, and Virtual

Capabilities needed in your implementation (beware, Virtual Capabilities are calculated at runtime).
For further details on Virtual Capabilities, click here

manager = WURFLManagerBuilder.Build(configurer);

String ua = "Dalvik/1.6.0 (Linux; U; Android 4.3; SM-N90OT Build/JSS15J)";

IDevice device = manager.GetDeviceForRequest(ua);

Console.WriteLine("Device : {0}", device.ld);

String capName = "brand_name";
Console.WriteLine("Static Capability {0}: {1}", capName, device.GetCapability(capName));

String vcapName = "is_android";
Console.WriteLine("Virtual Capability {0}: {1}", vcapName, device.GetVirtualCapability(vcapName));

You can request a full list of Static and Virtual Capability name and values from the device instance.

Console.WriteLine("--- Device Static Capabilities ---");
foreach (KeyValuePair<string, string> dCap in device.GetCapabilities())
Console.WriteLine("[{0}] = [{1}]", dCap.Key, dCap.Value);

Console.WriteLine("--- Device Virtual Capabilities ---");
foreach (KeyValuePair<string, string> vCap in device.GetVirtualCapabilities())
Console.WriteLine("[{0}] = [{1}]", vCap.Key, vCap.Value);
}

WURFL will throw Exceptions in case of failure during the entire process

catch (Exception e)

{
Console.WriteLine("WURFLSimpleTest throws this exception : {0} - {1}", e.GetType(), e.Message);

}
}
}
}

Static Capability filtering
In order to reduce memory usage and increase performance, you can specify a subset of the 500+ WURFL static

capabilities that will be held by the WURFL manager object.

You can set capability filters as follows:

configurer.SelectCapabilities(new String[] { "device_os", "is_tablet" });

Note: In this case you will be able to access only the device os and is_tablet Static Capabilities values of
the detected devices. Looking for other Static Capabilities than whose filtered, will return an empty string.

WURFL Cache

The WURFL manager has an LRU in-memory cache to preserve the result of previous detection.

If you want to enable the LRU cache, you can do it in InMemoryConfigurer object passing it the cache size:

/documentation/onsite/onsite-Dotnet-api#virtualcapabilities

configurer.SetCacheProvider(100000);
WURFL Updater

For API versions 1.8.1.1 and greater, you can keep your wurfl.zip file uptodate with Scientiamobile's data release

schedule using the WURFL Updater.

To configure WURFL Updater, you will need your personal WURFL Snapshot URL (found in the Scientiamobile

customer Vault). You may configure the frequency for update checks.

Begin by adding the Wurfl.Updater namespace to your application.

using Wurfl.Updater;

Then, create a WURFLUpdater instance passing it the manager instance and your updater url

/I remember to modify the url below with your personal WURFL updater url
WURFLUpdater updater = new WURFLUpdater(manager, "https://data.scientiamobile.com/xxxxx/wurfl.zip");

Note: the path of the wurfl.zip specified in the configurer at the moment of WURFL Manager creation must be writable
from the process/task

that is executing the .NET API, since WURFLUpdater will update the file denoted by its path.

There are two options in which you can invoke the updater. - using the PerformUpdate() method which performs a

single update check and then stop.
updater.PerformUpdate();

e using the PerformPeriodicUpdate() method which performs update checks with a periodicity you can specify
with the SetFrequency(frequency) method,chosing among MINUTE DAILY THREE_DAYS WEEKLY (default
is DAILY).

updater.SetFrequency(Wurfl.Updater.Frequency. WEEKLY);
updater.PerformPeriodicUpdate();

If you want to stop Periodic Updates, invoke the StopPeriodicUpdate() method

updater.StopPeriodicUpdate();

Note: The WURFL Updater will check to see if a new version of the wurfl.zip has been released and, if
so, download it and reload the WURFL manager with the new version; all while the WURFL manager
still running and serving requests.

ASP.NET Web Application Usage

In your ASP.NET project, add as a reference both the Wurfl.dll and Wurfl.Aspnet.Extensions.dll assemblies.

In your App_Code folder create a class WurflSampleASPNETApp which will hold the WURFL manager instance used for

lookups.
using WURFL;

public static class WurflSampleASPNETApp
{

public static IWURFLManager WurflManager;
}

In an ASP.NET Web application, the Application_Start method for your Global.asax file is the place where all one-off

initializations will be performed. Here you can instruct the method to initialiaze the WurflManager instance.

<%@ Import Namespace="WURFL" %>
<%@ Import Namespace="WURFL.Aspnet.Extensions.Config" %>

private void Application_Start(Object sender, EventArgs €)

{
try
{
WurflSampleASPNETApp.WurfIManager = WURFLManagerBuilder.Build(new ApplicationConfigurer());

}

catch (Exception ex)

{
HttpRuntime.UnloadAppDomain();
initializationError = ex;
1
1

The WURFL configuration should be placed in your web.config file, adding the following directives:

<wurfl>
<mainFile path="~/App_Data/wurfl.zip" />
</wurfl>

This instructs the WurflSampleASPNETApp.WurfIManager initialization to look for the wurfl.zip file in your application's
App_Data folder.

The <wurfl> section is user-defined and needs to be registered before use. For this reason, you also need to add the
following at the top of your web.config file:
<configuration>
<configSections>
<section name="wurfl" type="WURFL.Aspnet.Extensions.Config. WURFLConfigurationSection,Wurfl. Aspnet.Extensions, Versio

n=1.9.4.0, Culture=neutral" />
</configSections>

</configuration>

With the WURFL manager object instantiated by Application_Start, you are ready to lookup Useragent/Request.

To perform a lookup during your Default.aspx page loading, place the following code in A-ts CodeBehind (the

Default.aspx.cs file)

using WURFL;
using WURFL.Aspnet.Extensions.Config;

public partial class _Default : System.Web.Ul.Page
{

public IDevice wurflDevice;

public String wurflDeviceld;

public String wurflDeviceBrandName;

public String wurflDevicelsAndroid;

protected void Page_Load(object sender, EventArgs e)

{
[
* on page load we populate wurflDevice and wurflDeviceld with wurfl detection results
wx
wurflDevice = WurflSampleASPNETApp.WurflManager.GetDeviceForRequest(Request);
wurflDeviceld = wurflDevice.|d;
wurflDeviceBrandName = wurflDevice.GetCapability("brand_name");
wurflDevicelsAndroid = wurflDevice.GetVirtualCapability("is_android");

Note: You can lookup devices either by passing the whole HttpRequest or the simple User-Agent. In this
last case, you may use the following code

wurflDevice = WurflSampleASPNETApp.WurflManager.GetDeviceForRequest(Request.UserAgent);

Note: Using the whole HitpRequest will result in a more precise device lookup

Now you can show the lookup result in your Default.aspx file

<body>
<form id="form1" runat="server">
<div>
WURFL device Id = <%= wurflDeviceld %>

WURFL device Brand Name = <%= wurflDeviceBrandName %>

WURFL device Is Android = <%= wurflDevicelsAndroid %>

</div>
</form>
</body>

Static Capability filtering
In order to reduce memory usage and increase performance, you can specify a subset of the 500+ WURFL static

capabilities that will be held by the WURFL manager object.

You can set capability filters in your web.config as follows:

<wurfl>
<mainFile path="~/App_Data/wurfl.zip" />
<filter caps="device_os,is_tablet" />
</wurfl>

Note: In this case you will be able to access only the device os and is_tablet Static Capabilities values of
the detected devices. Looking for other Static Capabilities than whose filtered, will return an empty string.

WURFL Updater

Since API version 1.8.1.1, if you want to keep your wurfl.zip uptodate with Scientiamobile's data release schedule, then

you might want to use the WURFL Updater features.

To configure the Updater you need to know your personal updater url taken from Scientiamobile customer Vault. You

may configure which periodicity (the frequency) you would like for update checks.

To configure the WURFL Updater, add the Wurfl.Updater namespace to your Global.asax file and create a

WURFLUpdater instance passing it the WURFL manager instance and your updater url

<%@ Import Namespace="Wurfl.Updater" %>

private void Application_Start(Object sender, EventArgs e)

{
WurflSampleASPNETApp.WurfIManager = WURFLManagerBuilder.Build(new ApplicationConfigurer());

// remember to modify the url below with your personal WURFL updater url
WURFLUpdater updater = new WURFLUpdater(WurflSampleASPNETApp.WurflManager, "https://data.scientiamobile.com/xxx
xx/wurfl.zip");

}

Note: the path of the wurfl.zip specified in your web.config must be writable from the process/task
that is executing the .NET API, since WURFLUpdater will update the file denoted by its path.

You can invoke the updater in two ways:

e using the PerformUpdate() method which performs a single update check and then stop.
updater.PerformUpdate();

e using the PerformPeriodicUpdate() method which performs update checks with a periodicity you can specify
with the SetFrequency(frequency) method,chosing among MINUTE DAILY THREE_DAYS WEEKLY (default
is DAILY).

updater.SetFrequency(Wurfl.Updater.Frequency. WEEKLY);
updater.PerformPeriodicUpdate();

If you want to stop the Periodic Update, invoke the StopPeriodicUpdate() method

updater.StopPeriodicUpdate();

Note: The WURFL Updater will check to see if a new version of the wurfl.zip has been released and, if
so, download it and reload the WURFL manager with the new version; all while the WURFL manager
still running and serving requests.

Virtual Capabilities

Virtual capabilities are an important feature of the WURFL API that obtain values related to the requesting agent out of

the HTTP request as a whole (as opposed to limiting itself to static capabilities that are found in WURFL).

Virtual Capabilities are calculated at runtime; in order to compute its final returned value, a virtual capability may look at
static capabilities as well as parameters derived from the HTTP request at run-time. Virtual capabilities are useful to

model aspects of the HTTP Client that are not easily captured through the finite number of profiles in WURFL.

To get the value of a virtual capability:
var isSmartphone = device.GetVirtualCapability("is_smartphone");

The value associated with a virtual capability is always expressed as a string, even when it logically represents a number

or a Boolean.

Variable Name Type Description

is_app enumerable Tells you if the Requesting HTTP
Client is an App or not. The
control capability is called
controlcap_is_app
(virtual_capability group) and can
have values default, force_true
and force_false

is_smartphone enumerable This is a virtual capability that will
tell you if a device is a
Smartphone for some arbitrary
(and subject to change) definition
of Smartphone by
ScientiaMobile.

The virtual capability returns true
or false. Patch files can use the
is_smartphone control capability

to override the value returned by

the virtual capability.

Control capability is_smartphone
can take value default, force true

and force_false.

is_robot enumerable This is a virtual capability that
tells you if the HTTP Client is a
Bot (robot, crawler or other
programmable agent that stalks
the web).
Control capability is is_robot
(virtual_capability group) and can
have values default, force_true
and force_false.

is_mobile

is_full_desktop

is_windows_phone

is_ios

is_android

is_touchscreen

is_largescreen

enumerable

enumerable

enumerable

enumerable

enumerable

enumerable

enumerable

This is just an ALIAS for
is_wireless_device. There's no
control capability associated to
this virtual capability.

This is just an ALIAS for
ux_full_desktop. There's no
control capability associated to
this virtual capability.

Check if device runs any version
of Windows Phone OS.

This virtual capability relies on the

device_os (product_info group)

capability.

Check if device runs any version
of iOS.

This virtual capability relies on the
device_os (product_info group)

capability.

Check if device runs any version
of Android OS.

This virtual capability relies on the
device_os (product_info group)

capability.

This virtual capability tells you
whether a device has a touch
screen. There is no control
capability. Mostly an alias for
pointing_method == touchscreen
(product_info group) capability.

True if the device has a
horizontal and vertical screen
resolution greater than 480
pixels. Relies on the
resolution_width and
resolution_height (display group)
capabilities.

is_wml_preferred

is_xhtmimp_preferred

is_html_preferred

advertised_device_os

advertised_device_os_version

advertised_browser

advertised_browser_version

form_factor

enumerable

enumerable

enumerable

string

string

string

string

enumerable

True if the device is better served
with WML. Capability relies on
preferred_markup (markup

group).

True if the device is better served
with XHTML MP (Mobile Profile).
Capability relies on
preferred_markup (markup
group).

True if the device is better served
with HTML. Capability relies on
preferred_markup (markup
group).

This virtual capability will infer the
name of the Device OS based on
user-agent string analysis (and
possibly the analysis of other
HTTP headers and WURFL
capabilities).

This virtual capability will infer the
version of the Device OS based
on user-agent string analysis
(and possibly the analysis of
other HTTP headers and WURFL
capabilities).

This virtual capability will infer the
name of the browser based on
user-agent string analysis (and
possibly the analysis of other
HTTP headers and WURFL
capabilities).

This virtual capability will infer the
version of the browser based on
user-agent string analysis (and
possibly the analysis of other
HTTP headers and WURFL
capabilities).

This virtual capability will return
one of the following values that
identify a client's form factor:
Desktop, Tablet, Smartphone,
Feature Phone, Smart-TV, Robot,
Other non-Mobile, Other Mobile

complete_device_name string Concatenates brand name,
model name and marketing name
(where available) of a device into
a single string.

is_phone enumerable This is a virtual capability that will
tell you if a device is a mobile
phone .

The virtual capability returns true
or false. Patch files can use the
is_phone control capability to
override the value returned by the

virtual capability.

Control capability is_phone can
take value default, force_true and

force_false.

is_app_webview enumerable This virtual capability returns true
if a HTTP request is from an app
based webview.

device_name string Concatenates brand name and
marketing name of a device into
a single string. If marketing name
is not available, model name is
used instead.

advertised_app_name string This virtual capability will return
the name of the application that
generated the User-Agent or the
HTTP request.

IMPORTANT - Decommissioning of MatchMode options

Prior to version 1.9 of the API, users could choose between MatchMode.Performance and
MatchMode.Accuracy engine optimization options. These options had been introduced years ago to
manage the behavior of certain web browsers and their tendency to present "always different" User-
Agent strings that would baffle strategies to cache similar WURFL queries in memory.

As the problem has been solved by browser vendors, the need to adopt this strategy has diminished and
ultimately disappeared (i.e. there was no longer much to be gained with the performance mode in most
circumstances) and ScientiaMobile elected to "remove" this option to simplify configuration and go in the
direction of uniform API behavior in different contexts.

Customers who may find themselves in the unlikely situation of having to analyze significant amounts of
legacy web traffic, may still enable the old MatchMode.Performance behavior by set

MatchMode. FastDesktopBrowserMatch in their configuration.

Please note that users with the old MatchMode.Performance target engine will not receive an error.

The old behavior will not be triggered, though. The MatchMode.Default target (corresponding to the old
MatchMode.Accuracy) will be used instead.

© 2018 ScientiaMobile Inc.
All Rights Reserved.

NOTICE: All information contained herein is, and remains the property of ScientiaMobile Incorporated and its suppliers, if
any. The intellectual and technical concepts contained herein are proprietary to ScientiaMobile Incorporated and its
suppliers and may be covered by U.S. and Foreign Patents, patents in process, and are protected by trade secret or
copyright law. Dissemination of this information or reproduction of this material is strictly forbidden unless prior written

permission is obtained from ScientiaMobile Incorporated.

	"The first step in a great mobile experience"
	ONSITE .NET API
	Support
	Update Notifications

	WURFL OnSite .NET API: User Guide
	Installation
	WURFL OnSite .NET API NuGet package

	Getting Started
	Console Application Usage
	ASP.NET Web Application Usage

	Virtual Capabilities
	IMPORTANT - Decommissioning of MatchMode options

