
"The first step in a great mobile experience"

ONSITE .NET API

Support

The ScientiaMobile Enterprise Support Portal is open to all WURFL users, both commercial license holders
and evaluation users. It represents the combined knowledge base for the WURFL community. Commercial
licensees are invited to post questions in the forum using the account to which their licenses are
associated. This may mean faster handling of those posts by ScientiaMobile's personnel.

For commercial license holders, there are tiered support levels to address a variety of business support
needs. After logging into your account, commercial licensees with support options can access the
Enterprise Support portal to post tickets. These tickets will receive expedited attention.

To inquire about support plans, use our License Inquiry or our General Inquiry form.

Update Notifications

If you would like to be notified of our API updates, major data updates, and other technical changes,
please subscribe to our ScientiaMobile Announcements list

www.scientiamobile.com
Tel +1.703.310.6650
E-mail: sales@scientiamobile.com

Copyright © 2024 ScientiaMobile, all rights reserved. WURFL
Cloud, WURFL OnSite, WURFL and, InFuze WURFL InSight
and respective logos are trademarks of ScientiaMobile.
Apache is the trademark of the Apache Software
Foundation. NGINX is the trademark of Nginx Software Inc.
Varnish is the trademark of Varnish Software AB

WURFL OnSite .NET API: User Guide

https://support.scientiamobile.com/hc/en-us
https://support.scientiamobile.com/hc/en-us
https://www.scientiamobile.com/inquiry
https://www.scientiamobile.com/contact
https://www.scientiamobile.com/page/enewsletter

Installation

To enable WURFL on your application you must register for a free account on scientiamobile.com and
download the latest release from your File Manager.

The Wurfl.dll file must be added as a reference to any WURFL project, while the
Wurfl.Aspnet.Extensions.dll file must be referenced only in ASP.NET
projects where you plan to use WURFL. For example, you don't strictly need to reference
Wurfl.Aspnet.Extensions.dll if you're using WURFL from within a Console Application.

Note: As of version 1.12.11.0 we support :

1. .NET Framework 4.5.2, 4.6.2, 4.7.2, 4.8
2. .NET Core 3.1
3. .NET 5.0, 6.0, 7.0

Note: The WURFL API is closely tied to the wurfl.zip file. New versions of the wurfl.zip are
compatible with old versions of the API by nature, but the reverse is not true. Old versions
of the wurfl.zip are not guaranteed to be compatible with new versions of the API.

WURFL OnSite .NET API NuGet package

WURFL OnSite .NET API is available as a NuGet package too. To install, use the ScientiaMobile NuGet URL
https://nuget.scientiamobile.com/repository/wurfl-onsite/. To browse from VisualStudio:

1. Go to Tools -> NuGet Package Manager -> Package Manager Settings
2. Then go to Package Sources and add a new Package Source
3. Give the new Package Source a Name and Source URL

(https://nuget.scientiamobile.com/repository/wurfl-onsite/)
4. Next, go to Tools -> NuGet Package Manager -> Package Manager Console and run the

following command:
Install-Package WURFLOnSite (Install-Package WURFLOnSite.NETCore for .NET Core projects)

5. Once the command is executed, enter your ScientiaMobile account credientials

Getting Started

WURFL OnSite .NET API bases its operations on two main objects:

a WURFL Manager object implementing the IWURFLManager interface.
a Device object implementing the IDevice interface.

The WURFL Manager object should be instantiated only once in your application.

The WURFL Manager object offers several methods (among others) for you to gain access to the in-
memory representation of the Device Definition Repository (DDR).

public interface IWURFLManager
{
 .
 .
 IDevice GetDeviceForRequest(String userAgent);
 IDevice GetDeviceForRequest(HttpRequest request);
 IDevice GetDeviceById(String deviceId);
 .
 .
}

All of these methods return a Device object (implementing the IDevice interface) which represents the
matched device model.

The Device object offers several methods (among others) for you to access the matched device data.

https://filex.scientiamobile.com/user/index#products/onsite
https://nuget.scientiamobile.com/repository/wurfl-onsite/
https://img.imgeng.in/w_auto,900/https://docs.scientiamobile.com/img/nuget1.png
https://img.imgeng.in/w_auto,900/https://docs.scientiamobile.com/img/nuget2.png
https://img.imgeng.in/w_auto,900/https://docs.scientiamobile.com/img/nuget3.png
https://img.imgeng.in/w_auto,900/https://docs.scientiamobile.com/img/nuget4.png
https://img.imgeng.in/w_auto,900/https://docs.scientiamobile.com/img/nuget5.png

public interface IDevice
{
 .
 .
 String GetCapability(String name);
 String GetVirtualCapability(String name);
 IDictionary<String, String> GetCapabilities();
 IDictionary<String, String> GetVirtualCapabilities();
 String Id { get; }
 .
 .
}

In the next sections we'll see a sample Console Application as well as an ASP.NET Web based application ,
using device detection and accessing WURFL static capabilities and virtual capabilities.

Console Application Usage

In your Console Application project, add the Wurfl.dll assembly as a reference.

Note: Beginning with version 1.8.4, the System.Web assembly must be referenced, even if
you are building a Console Application.

Add a new class named WURFLSimpleTest to your project with the following code.

using WURFL;
using WURFL.Config;

namespace YourNameSpace
{
 class WURFLSimpleTest
 {
 static void Main(string[] args)
 {

Create the InMemoryConfigurer object setting the WURFL data file path;

 try
 {
 InMemoryConfigurer configurer = new InMemoryConfigurer()
 .MainFile("PATH_TO_YOUR_WURFL.ZIP");

 IWURFLManager manager = null;

Create the WURFL manager once, then lookup the UserAgent, and get the Device-Id, Static Capabilities,
and Virtual Capabilities needed in your implementation (beware, Virtual Capabilities are calculated at
runtime).

For further details on Virtual Capabilities, click here

 manager = WURFLManagerBuilder.Build(configurer);

 String ua = "Dalvik/1.6.0 (Linux; U; Android 4.3; SM-N900T Build/JSS15J)";

 IDevice device = manager.GetDeviceForRequest(ua);

 Console.WriteLine("Device : {0}", device.Id);

 String capName = "brand_name";
 Console.WriteLine("Static Capability {0}: {1}", capName, device.GetCapability(capName));

 String vcapName = "is_android";
 Console.WriteLine("Virtual Capability {0}: {1}", vcapName, device.GetVirtualCapability(vcapName));

You can request a full list of Static and Virtual Capability name and values from the device instance.

 Console.WriteLine("--- Device Static Capabilities ---");
 foreach (KeyValuePair<string, string> dCap in device.GetCapabilities())

file:///documentation/onsite/onsite-Dotnet-api#consoleusage
file:///documentation/onsite/onsite-Dotnet-api#aspnetusage
file:///documentation/onsite/onsite-Dotnet-api#virtualcapabilities

 Console.WriteLine("[{0}] = [{1}]", dCap.Key, dCap.Value);

 Console.WriteLine("--- Device Virtual Capabilities ---");
 foreach (KeyValuePair<string, string> vCap in device.GetVirtualCapabilities())
 Console.WriteLine("[{0}] = [{1}]", vCap.Key, vCap.Value);
 }

WURFL will throw Exceptions in case of failure during the entire process

 catch (Exception e)
 {
 Console.WriteLine("WURFLSimpleTest throws this exception : {0} - {1}", e.GetType(), e.Message);
 }
 }
 }
}

Passing the entire HTTP request for device detection

In addition to passing a User-Agent string to the WURFL API as shown in the example above, you can also
pass a HTTP request for device detection. This is useful in cases where the HTTP request contains critical
device information in places other than in the User-Agent header. This is most commonly seen in HTTP
requests with User-Agent Client Hints.

You can either pass the HTTP request directly to IDevice GetDeviceForRequest(HttpRequest request) or
instead pass a dictionary of the headers from the HTTP request:

 IDictionary<String, String> requestHeaders = new Dictionary<String, String>
 {
 {"User-Agent", "Mozilla/5.0 (Linux; Android 10; K) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/100
.0.0.0 Mobile Safari/537.36"},
 {"Sec-Ch-Ua", "\"Not_A Brand\";v=\"8\", \"Chromium\";v=\"120\", \"Google Chrome\";v=\"120\""},
 {"Sec-Ch-Ua-Platform", "Android"},
 {"Sec-Ch-Ua-Platform-Version", "13.0.0"},
 {"Sec-Ch-Ua-Model", "Pixel 6"},
 {"Sec-Ch-Ua-Mobile", "?1"},
 {"Sec-Ch-Ua-Full-Version-List", "\"Not_A Brand\";v=\"8.0.0.0\", \"Chromium\";v=\"120.0.6099.43\", \"Goo
gle Chrome\";v=\"120.0.6099.43\""},
 {"Sec-Ch-Ua-Arch", ""}
 };
 IDevice device = manager.GetDeviceForRequest(requestHeaders);

You can then request WURFL capabilities as shown in the section above.

IMPORTANT: Empty header values are treated as valid and those headers are not
discarded. If you build your HTTP request programmatically from a data source such as logs,
DB data, spreadsheet, etc., please make sure that you DO NOT add headers with empty
strings as values (this may also be the result of "casting" a NULL / NONE / NaN to a string):

Avoid:

{headerName}:{headerValue}

Use:

if notNullOrEmpty(headerValue):
 {headerName}:{headerValue}

Static Capability filtering

In order to reduce memory usage and increase performance, you can specify a subset of the 500+
WURFL static capabilities that will be held by the WURFL manager object.

You can set capability filters as follows:

configurer.SelectCapabilities(new String[] { "device_os", "is_tablet" });

file:///guides/implementing-useragent-clienthints
file:///documentation/onsite/onsite-Dotnet-api#consoleusage

Note: In this case you will be able to access only the device_os and is_tablet Static
Capabilities values of the detected devices. Looking for other Static Capabilities than whose
filtered, will return an empty string.

WURFL Cache

The WURFL manager has an LRU in-memory cache to preserve the result of previous detection.

If you want to enable the LRU cache, you can do it in InMemoryConfigurer object passing it the cache size:

configurer.SetCacheProvider(100000);

WURFL Updater

For API versions 1.8.1.1 and greater, you can keep your wurfl.zip file uptodate with Scientiamobile's data
release schedule using the WURFL Updater.

To configure WURFL Updater, you will need your personal WURFL Snapshot URL (found in the
Scientiamobile customer Vault). You may configure the frequency for update checks.

Begin by adding the Wurfl.Updater namespace to your application.

using Wurfl.Updater;

Then, create a WURFLUpdater instance passing it the manager instance and your updater url

 // remember to modify the url below with your personal WURFL updater url
 WURFLUpdater updater = new WURFLUpdater(manager, "https://data.scientiamobile.com/xxxxx/wurfl.zip");

Note: the path of the wurfl.zip specified in the configurer at the moment of WURFL Manager creation
must be writable from the process/task, and a wurfl.zip file must already be present in order for the
Updater to determine whether or not it needs to update.
that is executing the .NET API, since WURFLUpdater will update the file denoted by its path.

There are two options in which you can invoke the updater. - using the PerformUpdate() method which
performs a single update check and then stop.

 updater.PerformUpdate();

using the PerformPeriodicUpdate() method which performs update checks with a periodicity
you can specify with the SetFrequency(frequency) method, chosing among DAILY WEEKLY
(default is DAILY).

 updater.SetFrequency(Wurfl.Updater.Frequency.WEEKLY);
 updater.PerformPeriodicUpdate();

If you want to stop Periodic Updates, invoke the StopPeriodicUpdate() method

 updater.StopPeriodicUpdate();

Note: The WURFL Updater will check to see if a new version of the wurfl.zip has been
released and, if so, download it and reload the WURFL manager with the new version; all
while the WURFL manager still running and serving requests.

Dependencies for .NET Core projects

If your project uses .NET Core and you are manually referencing the Wurfl.dll assembly, you may need to
add a PackageReference for Microsoft.AspNetCore.Http.Abstractions:

 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.Http.Abstractions" Version="2.2.0" />
 </ItemGroup>

If you use nuget to integrate the WURFL API into your project, you can safely skip this section.

ASP.NET Web Application Usage

In your ASP.NET project, add as a reference both the Wurfl.dll and Wurfl.Aspnet.Extensions.dll assemblies.

In your App_Code folder create a class WurflSampleASPNETApp which will hold the WURFL manager
instance used for lookups.

using WURFL;

public static class WurflSampleASPNETApp
{
 public static IWURFLManager WurflManager;
}

In an ASP.NET Web application, the Application_Start method for your Global.asax file is the place where
all one-off initializations will be performed. Here you can instruct the method to initialiaze the
WurflManager instance.

 .
 .
<%@ Import Namespace="WURFL" %>
<%@ Import Namespace="WURFL.Aspnet.Extensions.Config" %>
 .
 .
 .
 .

 private void Application_Start(Object sender, EventArgs e)
 {
 try
 {
 WurflSampleASPNETApp.WurflManager = WURFLManagerBuilder.Build(new ApplicationConfigurer());
 }
 catch (Exception ex)
 {
 HttpRuntime.UnloadAppDomain();
 initializationError = ex;
 }
 }
 .
 .
 .
 .

The WURFL configuration should be placed in your web.config file, adding the following directives:

<wurfl>
 <mainFile path="~/App_Data/wurfl.zip" />
</wurfl>

This instructs the WurflSampleASPNETApp.WurflManager initialization to look for the wurfl.zip file in your
application's App_Data folder.

The <wurfl> section is user-defined and needs to be registered before use. For this reason, you also need
to add the following at the top of your web.config file:

<configuration>
 <configSections>
 <section name="wurfl" type="WURFL.Aspnet.Extensions.Config.WURFLConfigurationSection,Wurfl.Aspnet.Exte
nsions, Version=1.9.5.0, Culture=neutral" />
 </configSections>
 :
</configuration>

With the WURFL manager object instantiated by Application_Start, you are ready to lookup
Useragent/Request.

file:///documentation/onsite/onsite-Dotnet-api#nuget

To perform a lookup during your Default.aspx page loading, place the following code in Ã¬ts CodeBehind
(the Default.aspx.cs file)

 .
 .
 using WURFL;
 using WURFL.Aspnet.Extensions.Config;
 .
 .
 public partial class _Default : System.Web.UI.Page
 {
 public IDevice wurflDevice;
 public String wurflDeviceId;
 public String wurflDeviceBrandName;
 public String wurflDeviceIsAndroid;

 protected void Page_Load(object sender, EventArgs e)
 {
 /**
 * on page load we populate wurflDevice and wurflDeviceId with wurfl detection results
 **/
 wurflDevice = WurflSampleASPNETApp.WurflManager.GetDeviceForRequest(Request);
 wurflDeviceId = wurflDevice.Id;
 wurflDeviceBrandName = wurflDevice.GetCapability("brand_name");
 wurflDeviceIsAndroid = wurflDevice.GetVirtualCapability("is_android");
 }
 }
 .
 .

Note: You can lookup devices either by passing the whole HttpRequest or the simple User-
Agent. In this last case, you may use the following code

 wurflDevice = WurflSampleASPNETApp.WurflManager.GetDeviceForRequest(Request.UserAgent);

Note: Using the whole HttpRequest will result in a more precise device lookup

Now you can show the lookup result in your Default.aspx file

 .
 .
 <body>
 <form id="form1" runat="server">
 <div>
 WURFL device Id = <%= wurflDeviceId %>

 WURFL device Brand Name = <%= wurflDeviceBrandName %>

 WURFL device Is Android = <%= wurflDeviceIsAndroid %>

 </div>
 </form>
 </body>
 .
 .

Static Capability filtering

In order to reduce memory usage and increase performance, you can specify a subset of the 500+
WURFL static capabilities that will be held by the WURFL manager object.

You can set capability filters in your web.config as follows:

<wurfl>
 <mainFile path="~/App_Data/wurfl.zip" />
 <filter caps="device_os,is_tablet" />
</wurfl>

Note: In this case you will be able to access only the device_os and is_tablet Static
Capabilities values of the detected devices. Looking for other Static Capabilities than whose
filtered, will return an empty string.

WURFL Updater

Since API version 1.8.1.1, if you want to keep your wurfl.zip uptodate with Scientiamobile's data release
schedule, then you might want to use the WURFL Updater features.

To configure the Updater you need to know your personal updater url taken from Scientiamobile customer
Vault. You may configure which periodicity (the frequency) you would like for update checks.

To configure the WURFL Updater, add the Wurfl.Updater namespace to your Global.asax file and create a
WURFLUpdater instance passing it the WURFL manager instance and your updater url

 .
 .

<%@ Import Namespace="Wurfl.Updater" %>
 .
 .
 .
 .

 private void Application_Start(Object sender, EventArgs e)
 {
 WurflSampleASPNETApp.WurflManager = WURFLManagerBuilder.Build(new ApplicationConfigurer());
 // remember to modify the url below with your personal WURFL updater url
 WURFLUpdater updater = new WURFLUpdater(WurflSampleASPNETApp.WurflManager, "https://data.scientiam
obile.com/xxxxx/wurfl.zip");
 }
 .

Note: the path of the wurfl.zip specified in your web.config must be writable from the
process/task
that is executing the .NET API, since WURFLUpdater will update the file denoted by its path.

You can invoke the updater in two ways:

using the PerformUpdate() method which performs a single update check and then stop.

 updater.PerformUpdate();

using the PerformPeriodicUpdate() method which performs update checks with a periodicity
you can specify with the SetFrequency(frequency) method, chosing among DAILY WEEKLY
(default is DAILY).

 updater.SetFrequency(Wurfl.Updater.Frequency.WEEKLY);
 updater.PerformPeriodicUpdate();

If you want to stop the Periodic Update, invoke the StopPeriodicUpdate() method

 updater.StopPeriodicUpdate();

Note: The WURFL Updater will check to see if a new version of the wurfl.zip has been
released and, if so, download it and reload the WURFL manager with the new version; all
while the WURFL manager still running and serving requests.

Virtual Capabilities

Virtual capabilities are an important feature of the WURFL API that obtain values related to the requesting
agent out of the HTTP request as a whole (as opposed to limiting itself to static capabilities that are found
in WURFL).

Virtual Capabilities are calculated at runtime; in order to compute its final returned value, a virtual

capability may look at static capabilities as well as parameters derived from the HTTP request at run-time.
Virtual capabilities are useful to model aspects of the HTTP Client that are not easily captured through the
finite number of profiles in WURFL.

To get the value of a virtual capability:

var isSmartphone = device.GetVirtualCapability("is_smartphone");

The value associated with a virtual capability is always expressed as a string, even when it logically
represents a number or a Boolean.

Variable Name Type Description

is_app boolean Tells you if the Requesting
HTTP Client is an App or not.

is_smartphone boolean This is a virtual capability
that will tell you if a device is
a Smartphone for some
arbitrary (and subject to
change) definition of
Smartphone by
ScientiaMobile.

The virtual capability returns
true or false. Patch files can
use the is_smartphone
control capability to override
the value returned by the
virtual capability.

Control capability
is_smartphone can take
value default, force_true and
force_false. private

is_mobile boolean This is just an ALIAS for
is_wireless_device. There's
no control capability
associated to this virtual
capability. private

is_full_desktop boolean This is just an ALIAS for
ux_full_desktop. There's no
control capability associated
to this virtual capability.
private

is_windows_phone boolean Check if device runs any
version of Windows Phone
OS.

This virtual capability relies
on the device_os
(product_info group)
capability. private

is_ios boolean Check if device runs any
version of iOS.

This virtual capability relies
on the device_os
(product_info group)
capability. private

is_android boolean Check if device runs any
version of Android OS.

This virtual capability relies
on the device_os
(product_info group)
capability. private

is_touchscreen boolean This virtual capability tells
you whether a device has a
touch screen. There is no
control capability. Mostly an
alias for pointing_method ==
touchscreen (product_info
group) capability. private

is_largescreen boolean True if the device has a
horizontal and vertical screen
resolution greater than 480
pixels. Relies on the
resolution_width and
resolution_height (display
group) capabilities. private

is_wml_preferred boolean True if the device is better
served with WML. Capability
relies on preferred_markup
(markup group). private

is_xhtmlmp_preferred boolean True if the device is better
served with XHTML MP
(Mobile Profile). Capability
relies on preferred_markup
(markup group). private

Variable Name Type Description

is_html_preferred boolean True if the device is better
served with HTML. Capability
relies on preferred_markup
(markup group). private

advertised_device_os string This virtual capability will
infer the name of the Device
OS based on user-agent
string analysis (and possibly
the analysis of other HTTP
headers and WURFL
capabilities). private

advertised_device_os_vers
ion

string This virtual capability will
infer the version of the
Device OS based on user-
agent string analysis (and
possibly the analysis of other
HTTP headers and WURFL
capabilities). private

advertised_browser string This virtual capability will
infer the name of the browser
based on user-agent string
analysis (and possibly the
analysis of other HTTP
headers and WURFL
capabilities). private

advertised_browser_versi
on

string This virtual capability will
infer the version of the
browser based on user-agent
string analysis (and possibly
the analysis of other HTTP
headers and WURFL
capabilities). private

form_factor enumerable This virtual capability will
return one of the following
values that identify a client's
form factor: Desktop, Tablet,
Smartphone, Feature Phone,
Smart-TV, Robot, Other non-
Mobile, Other Mobile private

complete_device_name string Concatenates brand name,
model name and marketing
name (where available) of a
device into a single string.
private

Variable Name Type Description

is_phone boolean This is a virtual capability
that will tell you if a device is
a mobile phone .

The virtual capability returns
true or false. Patch files can
use the is_phone control
capability to override the
value returned by the virtual
capability.

Control capability is_phone
can take value default,
force_true and force_false.
private

is_app_webview boolean This virtual capability returns
true if a HTTP request is from
an app based webview.
private

device_name string Concatenates brand name
and marketing name of a
device into a single string. If
marketing name is not
available, model name is
used instead. private

advertised_app_name string This virtual capability will
return the name of the
application that generated
the User-Agent or the HTTP
request. private

is_robot boolean

Variable Name Type Description

© 2024 ScientiaMobile Inc.

All Rights Reserved.

NOTICE: All information contained herein is, and remains the property of ScientiaMobile Incorporated and
its suppliers, if any. The intellectual and technical concepts contained herein are proprietary to
ScientiaMobile Incorporated and its suppliers and may be covered by U.S. and Foreign Patents, patents in
process, and are protected by trade secret or copyright law. Dissemination of this information or
reproduction of this material is strictly forbidden unless prior written permission is obtained from
ScientiaMobile Incorporated.

	"The first step in a great mobile experience"
	ONSITE .NET API
	Support
	Update Notifications

	WURFL OnSite .NET API: User Guide
	Installation
	WURFL OnSite .NET API NuGet package

	Getting Started
	Console Application Usage
	ASP.NET Web Application Usage

	Virtual Capabilities

