"The first step in a great mobile experience”

scientiamobile

ONSITE PHP API

Support

The ScientiaMobile Enterprise Support Portal is open to all WURFL users, both commercial license holders

and evaluation users. It represents the combined knowledge base for the WURFL community. Commercial
licensees are invited to post questions in the forum using the account to which their licenses are

associated. This may mean faster handling of those posts by ScientiaMobile's personnel.

For commercial license holders, there are tiered support levels to address a variety of business support
needs. After logging into your account, commercial licensees with support options can access the

Enterprise Support portal to post tickets. These tickets will receive expedited attention.

To inquire about support plans, use ourLicense Inquiry or our General Inquiry form.

Update Notifications

If you would like to be notified of our APl updates, major data updates, and other technical changes,

please subscribe to our ScientiaMobile Announcements list

. . . Copyright © 2025 ScientiaMobile, all rights reserved. WURFL
SCIentIamOblle Cloud, WURFL OnSite, WURFL and, InFuze WURFL InSight
ienti bil and respective logos are trademarks of ScientiaMobile.
lll_vg\llv_\'l_.ic;%g.?{\a%ésebcom Apache is the trademark of the Apache Software
E-mail: sales@scientiamobile.com Foundation. NGINX is the trademark of Nginx Software Inc.

Varnish is the trademark of Varnish Software AB

WURFL OnSite PHP API; User Guide

https://support.scientiamobile.com/hc/en-us
https://support.scientiamobile.com/hc/en-us
https://www.scientiamobile.com/inquiry
https://www.scientiamobile.com/contact
https://www.scientiamobile.com/page/enewsletter

Note: If you are moving from our legacy Database APl to PHP API, please refer to our
detailed migration guide to ensure a smooth transition. Also, there are breaking changes in
APl release v1.8. For documentation of releases before APl v1.8 please refer to the README
file included with that version. If you need aditional help for versions prior to 1.8 feel free to
contact us at: support@scientiamobile.com.*

Installation

Start a Trial or Purchase a License

To access the installation package, please create afree ScientiaMobile account and contact us to initiate a

trial or to purchase a license.
Where to Download the Installation Package

To download the installation package, log in to your existing ScientiaMobile account Once logged in, you
will be shown your Customer Vault, where you can view and download the latest releases of the WURFL
API associated with your license. For details on downloading WURFL data snapshots, please refer to this

documentation.

Once you have downloaded the latest release, extract the files to be accessible from your PHP enabled

webserver.

Note: The WURFL API is closely tied to thewurfl.xml file. New versions of the wurfl.xml are
compatible with old versions of the APl by nature, but the reverse is not true. Old versions
of the wurfl.xml are not guaranteed to be compatible with new versions of the API.

Requirements
e PHP >=7.4
e extension: xml (XMLReader)
o Composer - The WURFL OnSite PHP API uses Composer which is a tool for dependency
management in PHP. It allows you to declare the libraries your project depends on and it will

manage (install/update) them for you. Download and instructions can be found here.
Install dependencies

Inside of your project folder, run the following command:

composer install --optimize-autoloader --no-dev
WURFL Data Snapshot

To perform lookups, you will need a copy of your WURFL data snapshot (also referred to as thewurfl.xml).
While there is one included in the release package, it is intended to be a sample and will not contain all of
your licensed capabilities. Your licensed WURFL data snapshot can be accessed by following these

directions.

Adds WURFL PHP API to an existing project using composer.json

If your project uses Composer, you can simplify maintenance by specifying the WURFL PHP API as an

artifact repository:

e Copy the WURFL PHP API ZIP package in a folder which will contain the archives

e Add the following configuration to your composer.json:

https://docs.scientiamobile.com/guides/upgrade-to-wurfl-onsite-php-api-from-onsite-database-api
mailto:support@scientiamobile.com
https://my.scientiamobile.com/register
https://scientiamobile.com/start-trial-2/
http://my.scientiamobile.com/
https://my.scientiamobile.com/myaccount/products
https://filex.scientiamobile.com/user/index#products/onsite
https://docs.scientiamobile.com/guides/wurfl-snapshot-generator
https://getcomposer.org/
https://getcomposer.org/download/
https://docs.scientiamobile.com/guides/wurfl-snapshot-generator
https://getcomposer.org/doc/05-repositories.md#artifact

"repositories": [

{
"type": "artifact",
"url": "/path/to/directory/with/zips/"
}
I
"require": {
"scientiamobile/wurfl-api": "*"
}
e Run composer install to install the dependencies
Note: To update the package, simply copy the new ZIP archive in the package folder and
run composer update
Configuring WURFL

Starting in version 1.8.0.0, the APl uses a dependency container to configure and inject the required

dependencies.
To configure WURFL you need to create a PHP configuration file returning a Container object.
As reference or starting point, please refer to theconfig/config.php.example file.

1. Create a new WURFL Dependency Container with optional settings

// Example: Create WURFL Dependency Container
$container = new \ScientiaMobile\WURFL\Container\Container([
'wurfl_snapshot_url' => 'https://data.scientiamobile.com/xxxxx/wurfl.zip',
'wurfl_capability filter' => [
'device_os',
'device_os_version',
...
1
'wurfl_patches' => [
'/full/path/to/patch-1.xml",
'/full/path/to/patch-2.xml",
...
1
/...
;

The Container takes an optional argurment as an associative array of settings with the following

keys:

o wurfl_db: a full path to the WURFL DB file (default to:resources/wurfl.xml)

e wurfl_snapshot_url: The WURFL Snapshot URL from your customer vault on
scientiamobile.com (click on "View Accout" next to your OnSite license). Ex.
https://data.scientiamobile.com/xxxxx/wurfl.zip.

o wurfl_patches: an array containing the WURFL patches' full path

o wurfl_capability_filter: an array with the capabilities to load in order to reduce
memory usage and increase performance

o« wurfl_storage_path: the absolute path to the storage dir. Default to "storage"

o« wurfl_debug: a boolean that enables the debug mode (default to:false)

Note: if wurfl_snapshot_url is specified the wurfl_db setting will be ignored.

2. Create a Storage adapter using either the StorageFactory, or by simply instantiating one of the

Storage classes.

The API supports the following storage mechanisms:

https://www.scientiamobile.com/update-api-xml-device-detection#xml
https://my.scientiamobile.com/myaccount

e File (default)

e SQLite through the PDO extension

e Redis through the redis extension

e MySQL through the PDO or the mysqli extension
¢ MongoDB through the mongodb extension

e Memory

/| Example: Create a File storage adapter
use ScientiaMobile\WURFL\Storage\StorageFactory;
$storage = StorageFactory::createFileStorage('/path/to/storage/folder');

3. Create a Cache adapter using either the CacheFactory factory, or by simply instantiating one of

the Cache classes. The API supports the following caching mechanisms:

e File (default)

e APCu (APC User Cache)
e Redis

e SQLite

e Memcache

o MySQL

e Null (no caching)

// Example: Create a File cache adapter
use ScientiaMobile\WURFL\Cache\CacheFactory;
use ScientiaMobile\WURFL\Cache\CacheAdapterinterface;

// Time to live for cache item
$ttl = CacheAdapterinterface::NEVER; //Default
$cache = CacheFactory::createFileCache($ttl, '/path/to/storage/folder');

4. Add the storage and cache adapters to the container

$container->setStorageAdapter($storage);
$container->setCacheAdapter($cache);

Note: Since the default configuration uses the File adapter for both Storage and Caching,
you'll need to make sure your webserver can write to the storage directories.

Note: As reference on how configure and use the Evalution version please refer to the
section: WURFL PHP API Basic Usage for the Evaluation version

WURFL Updater

APl version 1.8.0.0 introduces WURFL updater - a new command line utility which allows a client using
WUREFL to automatically update while the standard WURFLEngine is running and serving requests. In
order to use the WURFL Updater, you must have your personal WURFL Snapshot URL (wurfl_snapshot_url)
in the following format: https://data.scientiamobile.com/xxxxx/wurfl.zip where xxxxx is replaced with you
personal access token. Also, do note that the wurfl_storage_path specified in the dependency container
must be writable from the process/task and a wurfl.zip file must already be present in order for the

Updater to run and determine whether or not the file needs to be updated.
The wurfl-updater utility is located under:

e /your/project/root/path/vendor/bin/ for project that uses the APl as composer dependency

e /path/to/wurfl-api/ for project that uses the API as standalone library

The wurfl-updater utility can be used to runon demand or periodic updates.

Running "periodic" updates.

This is the suggested configuration since it allows periodic checks for an updated version of the wurfl.zip

file, downloads it, and builds the repository with the updated version.

The quickest way to enable periodic updates is to use a time-based job scheduler, like a crontab:

Crontab example

H - minute (0 - 59)

| - hour (0 - 23)

#|| - day of month (1 - 31)

#1| |- month (1 - 12) OR jan,feb,mar,apr ...

]| day of week (0 - 6) (Sunday=0 or 7) OR sun,mon,tue,wed,thu,fri,sat
#1111

Ok kKKK <yser> <command>

Run the wurfl-updater script with daily frequency
30 3 *** www-data /path/to/php -d memory_limit=1024M /path/to/wurfl-updater -c /path/to/config.php > /dev
/null

Running "on demand" update.
php -d memory_limit=1024M /path/to/wurfl-updater -c /path/to/config.php

On demand update runs only once per call.

WURFL PHP API Basic Usage

require_once './vendor/autoload.php';

// Require the dependency container object

$container = require_once '/path/to/config/config.php’;

// Create a new instance of WURFLEngine

$wurfl_engine = new \ScientiaMobile\WURFL\WURFLEngine($container);
/I Get the device for the current request

$device = $wurfl_engine->getDeviceForHttpRequest();

/I Get the value for a static capability
$device->getCapability("is_wireless_device");

/| Get the value for a virtual capability
$device->getVirtualCapability("is_smartphone");

IMPORTANT: Empty header values are treated as valid and those headers are not
discarded. If you build your HTTP request programmatically from a data source such as logs,
DB data, spreadsheet, etc., please make sure that you DO NOT add headers with empty
strings as values (this may also be the result of "casting" a NULL / NONE / NaN to a string):

Avoid:
{headerName}:{headerValue}
Use:

if notNullOrEmpty(headerValue):
{headerName}:{headerValue}

WURFL PHP API Basic Usage for the Evaluation version

The Evaluation package comes with an XML file containing several of our popular WURFL Device

Capabilities that can be loaded directly from the API without use of the WURFL Updater.

require_once './vendor/autoload.php’;

// Require the dependency container object

$container = new \ScientiaMobile\WURFL\Container();

// Build the WURFL Repository using the WURFL evaluation XML
\ScientiaMobile\WURFL\Repositories\RepositoryManager::build($container);
// Create a new instance of WURFLEngine

$wurfl_engine = new \ScientiaMobile\WURFL\WURFLEngine($container);

// Get the device for the current request

$device = $wurfl_engine->getDeviceForHttpRequest();
// Get the value for a static capability
$device->getCapability("is_wireless_device");

// Get the value for a virtual capability
$device->getVirtualCapability("is_smartphone");

Note: Because this configuration of the WURFL repository is built directly from the WURFL
AP, the first request could take a few seconds to be served.

Capability Filtering

To reduce memory usage and increase performance, specify a subset of the 500+ WURFL capabilities.

You can set the desired capabilities as settings in the Dependency Container:

// Example: Create WURFL Dependency Container
$container = new \ScientiaMobile\WURFL\Container\Container([
‘wurfl_capability_filter' => [
'device_os',
‘device_os_version',

]
0

If you make any changes, or add a capability filter, you will need to reload the WURFL file so that only the
capabilities you've specified will be loaded. Do note that the auto-reload system will not detect the
change in your configuration and will reload the WURFL data automatically. You will need to either touch

the WUREFL file, or delete your persistence folder.

Note: If you are upgrading from a previous version, do note that, starting in WURFL AP/
version 1.8.0.0, you no longer need to specify WURFL mandatory capabilities.

Virtual Capabilities

Virtual capabilities are an important feature of the WURFL API that obtain values related to the requesting
agent out of the HTTP request as a whole (as opposed to limiting itself to capabilities that are found in

WURFL).

In order to compute its final returned value, a virtual capability may look at regular (non-virtual)
capabilities as well as parameters derived from the HTTP request at run-time. Virtual capabilities are
useful to model aspects of the HTTP Client that are not easily captured through the finite number of

profiles in WURFL.

To retrieve the value of a virtual capability, use thegetVirtualCapability() method from a Device object:

$is_smartphone = $device->getVirtualCapability('is_smartphone');

is_app boolean Tells you if the Requesting
HTTP Client is an App or not.

is_smartphone boolean Returns true if device
conforms to ScientiaMobile's
definition of a Smartphone.

Variable Name

is_mobile

is_full_desktop

is_windows_phone

is_ios

is_android

is_touchscreen

is_largescreen

is_wml_preferred

is_xhtmImp_preferred

Type

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

boolean

Description

This is just an ALIAS for
is_wireless_device.
Specifically a mobile phone
or a tablet are considered as
wireless devices, but a
desktop PC or a laptop are
not.

This is just an ALIAS for
ux_full_desktop.

Returns true if device runs
any version of Windows
Phone OS. This virtual
capability relies on the
device_os (product_info
group) capability.

Check if device runs any
version of iOS. This virtual
capability relies on the
device_os (product_info
group) capability.

Check if device runs any
version of Android OS. This
virtual capability relies on the
device_os (product_info
group) capability.

This virtual capability tells
you whether a device has a
touch screen. Mostly an alias
for pointing_method ==
touchscreen (product_info
group) capability.

True if the device has a
horizontal and vertical screen
resolution greater than 480
pixels. Relies on the
resolution_width and
resolution_height (display
group) capabilities.

True if the device is better
served with WML. Capability
relies on preferred_markup
(markup group).

True if the device is better
served with XHTML MP
(Mobile Profile). Capability
relies on preferred_markup
(markup group).

Variable Name

is_html_preferred

advertised_device_os

advertised_device_os_vers

ion

advertised_browser

advertised_browser_versi
on

form_factor

complete_device_name

is_phone

Type

boolean

string

string

string

string

enumerable

string

boolean

Description

True if the device is better
served with HTML. Capability
relies on preferred_markup
(markup group).

This virtual capability will
infer the name of the Device
OS based on user-agent
string analysis (and possibly
the analysis of other HTTP
headers and WURFL
capabilities).

This virtual capability will
infer the version of the
Device OS based on user-
agent string analysis (and
possibly the analysis of other
HTTP headers and WURFL
capabilities).

This virtual capability will
infer the name of the browser
based on user-agent string
analysis (and possibly the
analysis of other HTTP
headers and WURFL
capabilities).

This virtual capability will
infer the version of the
browser based on user-agent
string analysis (and possibly
the analysis of other HTTP
headers and WURFL
capabilities).

Returns the device's form
factor based on
categorization provided by
multiple capability tests. This
virtual capability will return
one of the following values
that identify a client's form
factor: Desktop, Tablet,
Smartphone, Feature Phone,
Smart-TV, Robot, Other non-
Mobile, Other Mobile.

Concatenates brand name,
model name and marketing
name (where available) of a
device into a single string.

This capability returns true if
a device is a mobile phone.

Variable Name Type Description

is_app_webview boolean Returns true if a HTTP
request is from an app based
webview. Please note that
browsers are not considered
apps for is_app_webview
capability purposes and will
not return true.

device_name string Concatenates brand name
and marketing name of a
device into a single string. If
marketing name is not
available, model name is
used instead.

advertised_app_name string Returns the name of the
application that generated
the User-Agent or the HTTP
request.

is_robot boolean

Checking User-Agent frozenness and HTTP headers quality

Starting from version 1.12.5.0 the HttpRequest class provides two new methods:isUaFrozen(),

headerQuality().

isUaFrozen(string $user_agent) returns a boolean value which, if true, means that the input User-Agent

string won't be updated by the sender browser.

headerQuality() returns an enumeration value that describes the HTTP headers quality. It has three

possible values:

e HEADER_QUALITY_FULL: all the headers needed for a successful WURFL detection are present.
Eg. a header with all UA-CH header fields present

o HEADER_QUALITY_BASIC: only some of the headers needed for a successful WURFL detection
are present.

e HEADER_QUALITY_NONE: no UA-CH headers are present

Example:

$headers = [
'User-Agent' => 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.0.0 Safa
ri/537.36',
'Sec-Ch-Ua' => "' Not A;Brand";v="99", "Chromium";v="96", "Google Chrome";v="96"",
'Sec-Ch-Ua-Platform' => 'Linux',
I;
$request = new HttpRequest($headers);
$is_ua_frozen = $request->isUaFrozen(); // true
$header_quality = $request->headerQuality(); // basic

Enable Fast Desktop Browser Match

Deprecated since 1.9.5.0

Use this option when you have significant amounts of desktop browser traffic compared to mobile device.
Will return "generic_web_browser" wurfl_id for the majority of web browsers.

// Enable the fast desktop browser match.
$wurfl_engine->enableFastDesktopBrowserMatch();

Examples

There is a usage example included with the PHP API in the examples/demo folder.

The file examples/demo/index.php demonstrates how you can use the API to display the capabilities of a

visiting device.

IMPORTANT - Decommissioning of Engine Target options

Prior to version 1.9 of the API, users could choose between High Accuracy and High
Performance engine optimization options. These options had been introduced years ago to
manage the behavior of certain web browsers and their tendency to present "always
different" User-Agent strings that would baffle strategies to cache similar WURFL queries in
memory. As the problem has been solved by browser vendors, the need to adopt this
strategy has diminished and ultimately disappeared (i.e. there was no longer much to be
gained with the high-performance mode in most circumstances) and ScientiaMobile elected
to deprecate this option to simplify configuration and go in the direction of uniform AP/
behavior in different contexts. Customers who may find themselves in the unlikely situation
of having to analyze significant amounts of legacy web traffic may still enable the old high-
performance internal behavior by enabling the

ENGINE_TARGET _FAST _DESKTOP_BROWSER_MATCH option in their engine target
configuration. Please note that users with the old HIGH_PERFORMANCE or HIGH_ACCURACY
target engine will not receive any error. The old behavior will not be triggered, though. The
DEFAULT target (corresponding to the old HIGH_ACCURACY) will be used instead.

© 2025 ScientiaMobile Inc.
All Rights Reserved.

NOTICE: All information contained herein is, and remains the property of ScientiaMobile Incorporated and
its suppliers, if any. The intellectual and technical concepts contained herein are proprietary to
ScientiaMobile Incorporated and its suppliers and may be covered by U.S. and Foreign Patents, patents in
process, and are protected by trade secret or copyright law. Dissemination of this information or
reproduction of this material is strictly forbidden unless prior written permission is obtained from

ScientiaMobile Incorporated.

	"The first step in a great mobile experience"
	ONSITE PHP API
	Support
	Update Notifications

	WURFL OnSite PHP API: User Guide
	Installation
	Start a Trial or Purchase a License
	Where to Download the Installation Package

	Requirements
	Install dependencies
	WURFL Data Snapshot
	Adds WURFL PHP API to an existing project using composer.json
	Configuring WURFL
	WURFL Updater
	Running "periodic" updates.
	Running "on demand" update.

	WURFL PHP API Basic Usage
	WURFL PHP API Basic Usage for the Evaluation version
	Capability Filtering
	Virtual Capabilities
	Checking User-Agent frozenness and HTTP headers quality
	Enable Fast Desktop Browser Match
	Examples
	IMPORTANT - Decommissioning of Engine Target options

