
"The first step in a great mobile experience"

ONSITE PHP API

Support

The ScientiaMobile Enterprise Support Portal is open to all WURFL users, both commercial license holders
and evaluation users. It represents the combined knowledge base for the WURFL community. Commercial
licensees are invited to post questions in the forum using the account to which their licenses are
associated. This may mean faster handling of those posts by ScientiaMobile's personnel.

For commercial license holders, there are tiered support levels to address a variety of business support
needs. After logging into your account, commercial licensees with support options can access the
Enterprise Support portal to post tickets. These tickets will receive expedited attention.

To inquire about support plans, use our License Inquiry or our General Inquiry form.

Update Notifications

If you would like to be notified of our API updates, major data updates, and other technical changes,
please subscribe to our ScientiaMobile Announcements list

www.scientiamobile.com
Tel +1.703.310.6650
E-mail: sales@scientiamobile.com

Copyright © 2024 ScientiaMobile, all rights reserved. WURFL
Cloud, WURFL OnSite, WURFL and, InFuze WURFL InSight
and respective logos are trademarks of ScientiaMobile.
Apache is the trademark of the Apache Software
Foundation. NGINX is the trademark of Nginx Software Inc.
Varnish is the trademark of Varnish Software AB

WURFL OnSite PHP API: User Guide

https://support.scientiamobile.com/hc/en-us
https://support.scientiamobile.com/hc/en-us
https://www.scientiamobile.com/inquiry
https://www.scientiamobile.com/contact
https://www.scientiamobile.com/page/enewsletter

Note: If you are moving from our legacy Database API to PHP API, please refer to our
detailed migration guide to ensure a smooth transition. Also, there are breaking changes in
API release v1.8. For documentation of releases before API v1.8 please refer to the README
file included with that version. If you need aditional help for versions prior to 1.8 feel free to
contact us at: support@scientiamobile.com.*

Installation

To enable WURFL on your application you must register for a free account on scientiamobile.com and
download the latest release from your File Manager. Once you have downloaded the latest release,
extract the files to be accessible from your PHP enabled webserver.

Note: The WURFL API is closely tied to the wurfl.xml file. New versions of the wurfl.xml are
compatible with old versions of the API by nature, but the reverse is not true. Old versions
of the wurfl.xml are not guaranteed to be compatible with new versions of the API.

Requirements

PHP >= 7.4
extension: xml (XMLReader)
Composer - The WURFL OnSite PHP API uses Composer which is a tool for dependency
management in PHP. It allows you to declare the libraries your project depends on and it will
manage (install/update) them for you. Download and instructions can be found here.

Install dependencies

Inside of your project folder, run the following command:

composer install --optimize-autoloader --no-dev

Adds WURFL PHP API to an existing project using composer.json

If your project uses Composer, you can simplify maintenance by specifying the WURFL PHP API as an
artifact repository:

copy the WURFL PHP API ZIP package in a folder which will contain the archives
add the following configuration to your composer.json:

"repositories": [
 {
 "type": "artifact",
 "url": "/path/to/directory/with/zips/"
 }
],
"require": {
 "scientiamobile/wurfl-api": "*"
}

run composer install to install the dependencies

Note: To update the package, simply copy the new ZIP archive in the package folder and
run composer update

Configuring WURFL

Starting in version 1.8.0.0, the API uses a dependency container to configure and inject the required
dependencies.

https://docs.scientiamobile.com/guides/upgrade-to-wurfl-onsite-php-api-from-onsite-database-api
mailto:support@scientiamobile.com
https://filex.scientiamobile.com/user/index#products/onsite
https://getcomposer.org/
https://getcomposer.org/download/
https://getcomposer.org/doc/05-repositories.md#artifact

To configure WURFL you need to create a PHP configuration file returning a Container object.

As reference or starting point, please refer to the config/config.php.example file.

1. Create a new WURFL Dependency Container with optional settings

// Example: Create WURFL Dependency Container
$container = new \ScientiaMobile\WURFL\Container\Container([
 'wurfl_snapshot_url' => 'https://data.scientiamobile.com/xxxxx/wurfl.zip',
 'wurfl_capability_filter' => [
 'device_os',
 'device_os_version',
 // ...
],
 'wurfl_patches' => [
 '/full/path/to/patch-1.xml',
 '/full/path/to/patch-2.xml',
 // ...
],
 // ...
]);

The Container takes an optional argurment as an associative array of settings with the following
keys:

wurfl_db: a full path to the WURFL DB file (default to: resources/wurfl.xml)
wurfl_snapshot_url: The WURFL Snapshot URL from your customer vault on
scientiamobile.com (click on "View Accout" next to your OnSite license). Ex.
https://data.scientiamobile.com/xxxxx/wurfl.zip.
wurfl_patches: an array containing the WURFL patches' full path
wurfl_capability_filter: an array with the capabilities to load in order to reduce
memory usage and increase performance
wurfl_storage_path: the absolute path to the storage dir. Default to "storage"
wurfl_debug: a boolean that enables the debug mode (default to: false)

Note: if wurfl_snapshot_url is specified the wurfl_db setting will be ignored.

2. Create a Storage adapter using either the StorageFactory, or by simply instantiating one of the
Storage classes.

The API supports the following storage mechanisms:

File (default)
SQLite through the PDO extension
Redis through the redis extension
MySQL through the PDO or the mysqli extension
MongoDB through the mongodb extension
Memory

// Example: Create a File storage adapter
use ScientiaMobile\WURFL\Storage\StorageFactory;
$storage = StorageFactory::createFileStorage('/path/to/storage/folder');

3. Create a Cache adapter using either the CacheFactory factory, or by simply instantiating one of
the Cache classes. The API supports the following caching mechanisms:

File (default)
APCu (APC User Cache)
Redis

https://www.scientiamobile.com/update-api-xml-device-detection#xml
https://my.scientiamobile.com/myaccount

SQLite
Memcache
MySQL
Null (no caching)

// Example: Create a File cache adapter
use ScientiaMobile\WURFL\Cache\CacheFactory;
use ScientiaMobile\WURFL\Cache\CacheAdapterInterface;

// Time to live for cache item
$ttl = CacheAdapterInterface::NEVER; //Default
$cache = CacheFactory::createFileCache($ttl, '/path/to/storage/folder');

4. Add the storage and cache adapters to the container

$container->setStorageAdapter($storage);
$container->setCacheAdapter($cache);

Note: Since the default configuration uses the File adapter for both Storage and Caching,
you'll need to make sure your webserver can write to the storage directories.

Note: As reference on how configure and use the Evalution version please refer to the
section: WURFL PHP API Basic Usage for the Evaluation version

WURFL Updater

API version 1.8.0.0 introduces WURFL updater - a new command line utility which allows a client using
WURFL to automatically update while the standard WURFLEngine is running and serving requests. In
order to use the WURFL Updater, you must have your personal WURFL Snapshot URL (wurfl_snapshot_url)
in the following format: https://data.scientiamobile.com/xxxxx/wurfl.zip where xxxxx is replaced with you
personal access token. Also, do note that the wurfl_storage_path specified in the dependency container
must be writable from the process/task and a wurfl.zip file must already be present in order for the
Updater to run and determine whether or not the file needs to be updated.

The wurfl-updater utility is located under:

/your/project/root/path/vendor/bin/ for project that uses the API as composer dependency
/path/to/wurfl-api/ for project that uses the API as standalone library

The wurfl-updater utility can be used to run on demand or periodic updates.

Running "periodic" updates.

This is the suggested configuration since it allows periodic checks for an updated version of the wurfl.zip
file, downloads it, and builds the repository with the updated version.

The quickest way to enable periodic updates is to use a time-based job scheduler, like a crontab:

Crontab example
.--------------- minute (0 - 59)
| .------------- hour (0 - 23)
| | .--------- day of month (1 - 31)
| | | .------- month (1 - 12) OR jan,feb,mar,apr ...
| | | | .----- day of week (0 - 6) (Sunday=0 or 7) OR sun,mon,tue,wed,thu,fri,sat
| | | | |
* * * * * <user> <command>

Run the wurfl-updater script with daily frequency
30 3 * * * www-data /path/to/php -d memory_limit=1024M /path/to/wurfl-updater -c /path/to/config.php > /dev
/null

Running "on demand" update.

php -d memory_limit=1024M /path/to/wurfl-updater -c /path/to/config.php

On demand update runs only once per call.

WURFL PHP API Basic Usage

require_once './vendor/autoload.php';

// Require the dependency container object
$container = require_once '/path/to/config/config.php';
// Create a new instance of WURFLEngine
$wurfl_engine = new \ScientiaMobile\WURFL\WURFLEngine($container);
// Get the device for the current request
$device = $wurfl_engine->getDeviceForHttpRequest();
// Get the value for a static capability
$device->getCapability("is_wireless_device");
// Get the value for a virtual capability
$device->getVirtualCapability("is_smartphone");

IMPORTANT: Empty header values are treated as valid and those headers are not
discarded. If you build your HTTP request programmatically from a data source such as logs,
DB data, spreadsheet, etc., please make sure that you DO NOT add headers with empty
strings as values (this may also be the result of "casting" a NULL / NONE / NaN to a string):

Avoid:

{headerName}:{headerValue}

Use:

if notNullOrEmpty(headerValue):
 {headerName}:{headerValue}

WURFL PHP API Basic Usage for the Evaluation version

The Evaluation package comes with an XML file containing several of our popular WURFL Device
Capabilities that can be loaded directly from the API without use of the WURFL Updater.

require_once './vendor/autoload.php';

// Require the dependency container object
$container = new \ScientiaMobile\WURFL\Container();
// Build the WURFL Repository using the WURFL evaluation XML
\ScientiaMobile\WURFL\Repositories\RepositoryManager::build($container);
// Create a new instance of WURFLEngine
$wurfl_engine = new \ScientiaMobile\WURFL\WURFLEngine($container);
// Get the device for the current request
$device = $wurfl_engine->getDeviceForHttpRequest();
// Get the value for a static capability
$device->getCapability("is_wireless_device");
// Get the value for a virtual capability
$device->getVirtualCapability("is_smartphone");

Note: Because this configuration of the WURFL repository is built directly from the WURFL
API, the first request could take a few seconds to be served.

Capability Filtering

To reduce memory usage and increase performance, specify a subset of the 500+ WURFL capabilities.
You can set the desired capabilities as settings in the Dependency Container:

// Example: Create WURFL Dependency Container
$container = new \ScientiaMobile\WURFL\Container\Container([
 'wurfl_capability_filter' => [
 'device_os',
 'device_os_version',
 ...
]

]);

If you make any changes, or add a capability filter, you will need to reload the WURFL file so that only the
capabilities you've specified will be loaded. Do note that the auto-reload system will not detect the
change in your configuration and will reload the WURFL data automatically. You will need to either touch
the WURFL file, or delete your persistence folder.

Note: If you are upgrading from a previous version, do note that, starting in WURFL API
version 1.8.0.0, you no longer need to specify WURFL mandatory capabilities.

Virtual Capabilities

Virtual capabilities are an important feature of the WURFL API that obtain values related to the requesting
agent out of the HTTP request as a whole (as opposed to limiting itself to capabilities that are found in
WURFL).

In order to compute its final returned value, a virtual capability may look at regular (non-virtual)
capabilities as well as parameters derived from the HTTP request at run-time. Virtual capabilities are
useful to model aspects of the HTTP Client that are not easily captured through the finite number of
profiles in WURFL.

To retrieve the value of a virtual capability, use the getVirtualCapability() method from a Device object:

$is_smartphone = $device->getVirtualCapability('is_smartphone');

Variable Name Type Description

is_app boolean Tells you if the Requesting
HTTP Client is an App or not.

is_smartphone boolean This is a virtual capability
that will tell you if a device is
a Smartphone for some
arbitrary (and subject to
change) definition of
Smartphone by
ScientiaMobile.

The virtual capability returns
true or false. Patch files can
use the is_smartphone
control capability to override
the value returned by the
virtual capability.

Control capability
is_smartphone can take
value default, force_true and
force_false. private

is_mobile boolean This is just an ALIAS for
is_wireless_device. There's
no control capability
associated to this virtual
capability. private

is_full_desktop boolean This is just an ALIAS for
ux_full_desktop. There's no
control capability associated
to this virtual capability.
private

is_windows_phone boolean Check if device runs any
version of Windows Phone
OS.

This virtual capability relies
on the device_os
(product_info group)
capability. private

is_ios boolean Check if device runs any
version of iOS.

This virtual capability relies
on the device_os
(product_info group)
capability. private

is_android boolean Check if device runs any
version of Android OS.

This virtual capability relies
on the device_os
(product_info group)
capability. private

is_touchscreen boolean This virtual capability tells
you whether a device has a
touch screen. There is no
control capability. Mostly an
alias for pointing_method ==
touchscreen (product_info
group) capability. private

is_largescreen boolean True if the device has a
horizontal and vertical screen
resolution greater than 480
pixels. Relies on the
resolution_width and
resolution_height (display
group) capabilities. private

Variable Name Type Description

is_wml_preferred boolean True if the device is better
served with WML. Capability
relies on preferred_markup
(markup group). private

is_xhtmlmp_preferred boolean True if the device is better
served with XHTML MP
(Mobile Profile). Capability
relies on preferred_markup
(markup group). private

is_html_preferred boolean True if the device is better
served with HTML. Capability
relies on preferred_markup
(markup group). private

advertised_device_os string This virtual capability will
infer the name of the Device
OS based on user-agent
string analysis (and possibly
the analysis of other HTTP
headers and WURFL
capabilities). private

advertised_device_os_vers
ion

string This virtual capability will
infer the version of the
Device OS based on user-
agent string analysis (and
possibly the analysis of other
HTTP headers and WURFL
capabilities). private

advertised_browser string This virtual capability will
infer the name of the browser
based on user-agent string
analysis (and possibly the
analysis of other HTTP
headers and WURFL
capabilities). private

advertised_browser_versi
on

string This virtual capability will
infer the version of the
browser based on user-agent
string analysis (and possibly
the analysis of other HTTP
headers and WURFL
capabilities). private

form_factor enumerable This virtual capability will
return one of the following
values that identify a client's
form factor: Desktop, Tablet,
Smartphone, Feature Phone,
Smart-TV, Robot, Other non-
Mobile, Other Mobile private

Variable Name Type Description

complete_device_name string Concatenates brand name,
model name and marketing
name (where available) of a
device into a single string.
private

is_phone boolean This is a virtual capability
that will tell you if a device is
a mobile phone .

The virtual capability returns
true or false. Patch files can
use the is_phone control
capability to override the
value returned by the virtual
capability.

Control capability is_phone
can take value default,
force_true and force_false.
private

is_app_webview boolean This virtual capability returns
true if a HTTP request is from
an app based webview.
private

device_name string Concatenates brand name
and marketing name of a
device into a single string. If
marketing name is not
available, model name is
used instead. private

advertised_app_name string This virtual capability will
return the name of the
application that generated
the User-Agent or the HTTP
request. private

is_robot boolean

Variable Name Type Description

Checking User-Agent frozenness and HTTP headers quality

Starting from version 1.12.5.0 the HttpRequest class provides two new methods: isUaFrozen(),
headerQuality().

isUaFrozen(string $user_agent) returns a boolean value which, if true, means that the input User-Agent
string won't be updated by the sender browser.

headerQuality() returns an enumeration value that describes the HTTP headers quality. It has three
possible values:

HEADER_QUALITY_FULL: all the headers needed for a successful WURFL detection are present.
Eg. a header with all UA-CH header fields present
HEADER_QUALITY_BASIC: only some of the headers needed for a successful WURFL detection
are present.
HEADER_QUALITY_NONE: no UA-CH headers are present

Example:

$headers = [
 'User-Agent' => 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.0.0 Safa
ri/537.36',
 'Sec-Ch-Ua' => '" Not A;Brand";v="99", "Chromium";v="96", "Google Chrome";v="96"',
 'Sec-Ch-Ua-Platform' => 'Linux',
];
$request = new HttpRequest($headers);
$is_ua_frozen = $request->isUaFrozen(); // true
$header_quality = $request->headerQuality(); // basic

Enable Fast Desktop Browser Match

Deprecated since 1.9.5.0

Use this option when you have significant amounts of desktop browser traffic compared to mobile device.
Will return "generic_web_browser" wurfl_id for the majority of web browsers.

// Enable the fast desktop browser match.
$wurfl_engine->enableFastDesktopBrowserMatch();

Examples

There is a usage example included with the PHP API in the examples/demo folder.

The file examples/demo/index.php demonstrates how you can use the API to display the capabilities of a
visiting device.

IMPORTANT - Decommissioning of Engine Target options

Prior to version 1.9 of the API, users could choose between High Accuracy and High
Performance engine optimization options. These options had been introduced years ago to
manage the behavior of certain web browsers and their tendency to present "always
different" User-Agent strings that would baffle strategies to cache similar WURFL queries in
memory. As the problem has been solved by browser vendors, the need to adopt this
strategy has diminished and ultimately disappeared (i.e. there was no longer much to be
gained with the high-performance mode in most circumstances) and ScientiaMobile elected
to deprecate this option to simplify configuration and go in the direction of uniform API
behavior in different contexts. Customers who may find themselves in the unlikely situation
of having to analyze significant amounts of legacy web traffic may still enable the old high-
performance internal behavior by enabling the
ENGINE_TARGET_FAST_DESKTOP_BROWSER_MATCH option in their engine target
configuration. Please note that users with the old HIGH_PERFORMANCE or HIGH_ACCURACY
target engine will not receive any error. The old behavior will not be triggered, though. The
DEFAULT target (corresponding to the old HIGH_ACCURACY) will be used instead.

© 2024 ScientiaMobile Inc.

All Rights Reserved.

NOTICE: All information contained herein is, and remains the property of ScientiaMobile Incorporated and
its suppliers, if any. The intellectual and technical concepts contained herein are proprietary to
ScientiaMobile Incorporated and its suppliers and may be covered by U.S. and Foreign Patents, patents in

process, and are protected by trade secret or copyright law. Dissemination of this information or
reproduction of this material is strictly forbidden unless prior written permission is obtained from
ScientiaMobile Incorporated.

	"The first step in a great mobile experience"
	ONSITE PHP API
	Support
	Update Notifications

	WURFL OnSite PHP API: User Guide
	Installation
	Requirements
	Install dependencies
	Adds WURFL PHP API to an existing project using composer.json
	Configuring WURFL
	WURFL Updater
	Running "periodic" updates.
	Running "on demand" update.

	WURFL PHP API Basic Usage
	WURFL PHP API Basic Usage for the Evaluation version
	Capability Filtering
	Virtual Capabilities
	Checking User-Agent frozenness and HTTP headers quality
	Enable Fast Desktop Browser Match
	Examples
	IMPORTANT - Decommissioning of Engine Target options

