
"The first step in a great mobile experience"

ONSITE SCALA API

Support

The ScientiaMobile Enterprise Support Portal is open to all WURFL users, both commercial license holders
and evaluation users. It represents the combined knowledge base for the WURFL community. Commercial
licensees are invited to post questions in the forum using the account to which their licenses are
associated. This may mean faster handling of those posts by ScientiaMobile's personnel.

For commercial license holders, there are tiered support levels to address a variety of business support
needs. After logging into your account, commercial licensees with support options can access the
Enterprise Support portal to post tickets. These tickets will receive expedited attention.

To inquire about support plans, use our License Inquiry or our General Inquiry form.

Update Notifications

If you would like to be notified of our API updates, major data updates, and other technical changes,
please subscribe to our ScientiaMobile Announcements list

www.scientiamobile.com
Tel +1.703.310.6650
E-mail: sales@scientiamobile.com

Copyright © 2024 ScientiaMobile, all rights reserved. WURFL
Cloud, WURFL OnSite, WURFL and, InFuze WURFL InSight
and respective logos are trademarks of ScientiaMobile.
Apache is the trademark of the Apache Software
Foundation. NGINX is the trademark of Nginx Software Inc.
Varnish is the trademark of Varnish Software AB

WURFL OnSite Scala API: User Guide

https://support.scientiamobile.com/hc/en-us
https://support.scientiamobile.com/hc/en-us
https://www.scientiamobile.com/inquiry
https://www.scientiamobile.com/contact
https://www.scientiamobile.com/page/enewsletter

The Scala API is built as a wrapper around the WURFL Java API to expose methods to be available from
within a Scala application. Below are the requirements that are needed in order to start including WURFL
into your Scala project.

Requirements

Java 8 JDK or above
Scala library 2.12.x/2.13.x/3.x
WURFL Java jar 1.11.0.0 or greater (it is highly recommended to use the same version of Scala
and Java jar files)

Installation

To enable WURFL on your application, you must register for a free account on scientiamobile.com and
download the latest release from your File Manager. Once you have downloaded the latest release,
you will simply need to add the WURFL Java JAR and the wurfl-scala.jar to your build path. Current
distribution contains four JAR files, one for each supported Scala version. Pick the one that fits your needs.

Note: The WURFL API is closely tied to the wurfl.xml file. New versions of the wurfl.xml are
compatible with old versions of the API by nature, but the reverse is not true. Old versions
of the wurfl.xml are not guaranteed to be compatible with new versions of the API.

Caching

It is possible to configure the API with a caching strategy in order to increase performance. Once you
have instantiated your WURFL object, you must set the cache provider that you would like to use.

The available caching strategy is LRUMapCacheProvider.

LRUMapCacheProvider:

// Create a WURFL object
val wurflScala = new Wurfl(new GeneralWURFLEngine("classpath:/resources/wurfl.zip"))

// Set cache provider
wurflScala.setCacheProvider(new LRUMapCacheProvider)

Capability Filtering

Reduce memory usage and increase performance by specifying a subset of the 500+ WURFL capabilities.
You can set the desired capabilities using the setFilter() method:

// Create a WURFL object
val wurflScala = new Wurfl(new GeneralWURFLEngine("classpath:/resources/wurfl.zip"))

// Set Capability Filter
wurflScala.setFilter(
 "device_os",
 "brand_name",
 "model_name"
)

Note: beginning with API 1.8.0.0, it is no longer necessary to specify all mandatory
capabilities in a filter.

Virtual Capabilities

Virtual capabilities are an important feature of the WURFL API that obtain values related to the requesting

https://filex.scientiamobile.com/user/index#products/onsite

agent out of the HTTP request as a whole (as opposed to limiting itself to capabilities that are found in
WURFL).

In order to compute its final returned value, a virtual capability may look at regular (non-virtual)
capabilities as well as parameters derived from the HTTP request at run-time. Virtual capabilities are
useful to model aspects of the HTTP Client that are not easily captured through the finite number of
profiles in WURFL.

val wurflScala = new Wurfl(new GeneralWURFLEngine("classpath:/resources/wurfl.zip"))
var device = wurflScala.deviceForRequest("Mozilla/5.0 (Linux; U; Android 4.2.2; GT-I9505 Build/JDQ39) AppleWebK
it/534.30 (KHTML, like Gecko) Version/4.0 Mobile Safari/534.30")

// Access a virtual capability
var smartphone = device.virtualCapability("is_smartphone")

Variable Name Type Description

is_app boolean Tells you if the Requesting
HTTP Client is an App or not.

is_smartphone boolean This is a virtual capability
that will tell you if a device is
a Smartphone for some
arbitrary (and subject to
change) definition of
Smartphone by
ScientiaMobile.

The virtual capability returns
true or false. Patch files can
use the is_smartphone
control capability to override
the value returned by the
virtual capability.

Control capability
is_smartphone can take
value default, force_true and
force_false. private

is_mobile boolean This is just an ALIAS for
is_wireless_device. There's
no control capability
associated to this virtual
capability. private

is_full_desktop boolean This is just an ALIAS for
ux_full_desktop. There's no
control capability associated
to this virtual capability.
private

is_windows_phone boolean Check if device runs any
version of Windows Phone
OS.

This virtual capability relies
on the device_os
(product_info group)
capability. private

is_ios boolean Check if device runs any
version of iOS.

This virtual capability relies
on the device_os
(product_info group)
capability. private

is_android boolean Check if device runs any
version of Android OS.

This virtual capability relies
on the device_os
(product_info group)
capability. private

is_touchscreen boolean This virtual capability tells
you whether a device has a
touch screen. There is no
control capability. Mostly an
alias for pointing_method ==
touchscreen (product_info
group) capability. private

is_largescreen boolean True if the device has a
horizontal and vertical screen
resolution greater than 480
pixels. Relies on the
resolution_width and
resolution_height (display
group) capabilities. private

is_wml_preferred boolean True if the device is better
served with WML. Capability
relies on preferred_markup
(markup group). private

is_xhtmlmp_preferred boolean True if the device is better
served with XHTML MP
(Mobile Profile). Capability
relies on preferred_markup
(markup group). private

Variable Name Type Description

is_html_preferred boolean True if the device is better
served with HTML. Capability
relies on preferred_markup
(markup group). private

advertised_device_os string This virtual capability will
infer the name of the Device
OS based on user-agent
string analysis (and possibly
the analysis of other HTTP
headers and WURFL
capabilities). private

advertised_device_os_vers
ion

string This virtual capability will
infer the version of the
Device OS based on user-
agent string analysis (and
possibly the analysis of other
HTTP headers and WURFL
capabilities). private

advertised_browser string This virtual capability will
infer the name of the browser
based on user-agent string
analysis (and possibly the
analysis of other HTTP
headers and WURFL
capabilities). private

advertised_browser_versi
on

string This virtual capability will
infer the version of the
browser based on user-agent
string analysis (and possibly
the analysis of other HTTP
headers and WURFL
capabilities). private

form_factor enumerable This virtual capability will
return one of the following
values that identify a client's
form factor: Desktop, Tablet,
Smartphone, Feature Phone,
Smart-TV, Robot, Other non-
Mobile, Other Mobile private

complete_device_name string Concatenates brand name,
model name and marketing
name (where available) of a
device into a single string.
private

Variable Name Type Description

is_phone boolean This is a virtual capability
that will tell you if a device is
a mobile phone .

The virtual capability returns
true or false. Patch files can
use the is_phone control
capability to override the
value returned by the virtual
capability.

Control capability is_phone
can take value default,
force_true and force_false.
private

is_app_webview boolean This virtual capability returns
true if a HTTP request is from
an app based webview.
private

device_name string Concatenates brand name
and marketing name of a
device into a single string. If
marketing name is not
available, model name is
used instead. private

advertised_app_name string This virtual capability will
return the name of the
application that generated
the User-Agent or the HTTP
request. private

is_robot boolean

Variable Name Type Description

Configuring WURFL updater

API version 1.8.2.0 introduces the WURFL updater; a new set of classes which allow a client using WURFL
to automatically update the WURFL file. In order to use the WURFL Updater, you must have your personal
WURFL Snapshot url in the following format: https://data.scientiamobile.com/xxxxx/wurfl.zip where xxxxx
is replaced with you personal access token. Also, do note that file path used to create the WURFL engine
must be writable from the process/task that is executing the Scala API since Updater will update the file
denoted by that path.

The suggested setting for the WURFL updater is "periodic" mode - in which the Updater will periodically
check to see if a new version of the wurfl.zip file has been released and, if so, download it and reload the
engine with the new version. This can occur while the standard Wurfl engine is running and serving
requests.

Running "periodic" updates.

val updater = Updater.apply(engine, "https://data.scientiamobile.com/xxxxx/wurfl.zip", patchPaths, proxySettings)
updater.performPeriodicUpdate(Frequency.DAILY)

proxySettings and patchPaths can be null

Being a periodic task, the updater will run perpetually until updater.StopPeriodicUpdate() is called.
Periodic update does not return a result. Failed/successful results must be checked in log files/console
messages.

If needed, Updater can also run in "on demand" mode - in which it will check for a new version of the
wurfl.zip once and then stop.

Do note that the path for the wurfl.zip file should be writable, and must already be present in order for the
Updater to determine whether or not it has to pull an update.

Running "on demand" update.

val updater = Updater.apply(engine, "https://data.scientiamobile.com/xxxxx/wurfl.zip", patchPaths, proxySettings)
UpdateResult result = updater.PerformUpdate()

On demand update runs only once per call and returns a result that can be used to programmatically
check if update has been successful or, in case of failure, get an error message.

Sample

A sample getting started project can be found below:

package com.scientiamobile.wurfl.examples
import com.scientiamobile.wurfl.Updater
import com.scientiamobile.wurfl.Wurfl
import com.scientiamobile.wurfl.core.GeneralWURFLEngine
import com.scientiamobile.wurfl.core.cache.{DoubleLRUMapCacheProvider, HashMapCacheProvider, LRUMapCach
eProvider}
import com.scientiamobile.wurfl.core.matchers.MatchType
import com.scientiamobile.wurfl.core.updater.Frequency

object Demo {

 def main(args: Array[String]) {

 print("Running scala version ")
 println(scala.util.Properties.scalaPropOrElse("version.number", "unknown scala version"))

 // Create WURFL passing a GeneralWURFLEngine object with a wurfl xml
 val engine = new GeneralWURFLEngine("wurfl.zip")
 val wurflWrapper = new Wurfl(engine)

 // Set cache provider
 wurflWrapper.setCacheProvider(new LRUMapCacheProvider)

 // Set Performance/Accuracy Mode
 wurflWrapper.setTargetAccuracy

 // Set Capability Filter
 wurflWrapper.setFilter(
 "can_assign_phone_number",
 "marketing_name",
 "brand_name",
 "model_name",
 "is_smarttv",
 "is_wireless_device",
 "device_os",
 "device_os_version",
 "is_tablet",
 "ux_full_desktop",
 "pointing_method",
 "preferred_markup",
 "resolution_height",

 "resolution_width",
 "xhtml_support_level",
 "mobile_browser_version")

 val updater = Updater.apply(engine, "https://data.scientiamobile.com/xxxxx/wurfl.zip", null, null)
 updater.performPeriodicUpdate(Frequency.MINUTES)

 // User-Agent here
 var userAgent = ""

 // Defining headers
 var headers = Map("Accept-Datetime"->"Thu, 31 May 2007 20:35:00 GMT")
 headers += ("Content-Type"-> "application/x-www-form-urlencoded")

 var device = wurflWrapper.deviceForHeaders(userAgent, headers)
 println("Device id: " + device.id)
 val matchType = device.matchType
 if (matchType == MatchType.conclusive)
 {
 println("Match Type is conclusive")

 }

 val wireless = device.capability("is_wireless_device")
 println("Is wireless: " + wireless.get)

 val formFactor = device.virtualCapability("form_factor")
 println("Form factor: " + formFactor.get)

 println("CAPABILITIES: ")
 println("--")
 val capabilities = device.capabilities
 // foreach can receive a tuple (in this case keyvalue one and two
 capabilities.foreach {kv => println(kv._1 +" - " + kv._2)}
 println("VIRTUAL CAPABILITIES: ")
 device.virtualCapabilities.foreach {kv => println(kv._1 +" - " + kv._2)}
 println("--")
 updater.stopPeriodicUpdate

 }

}

IMPORTANT: Empty header values are treated as valid and those headers are not
discarded. If you build your HTTP request programmatically from a data source such as logs,
DB data, spreadsheet, etc., please make sure that you DO NOT add headers with empty
strings as values (this may also be the result of "casting" a NULL / NONE / NaN to a string):

Avoid:

{headerName}:{headerValue}

Use:

if notNullOrEmpty(headerValue):
 {headerName}:{headerValue}

IMPORTANT - Decommissioning of MatchMode options Prior to version 1.9 of the API,
users could choose between High Accuracy and High Performance engine optimization
options. These options had been introduced years ago to manage the behavior of certain
web browsers and their tendency to present "always different" User-Agent strings that
would baffle strategies to cache similar WURFL queries in memory.

As the problem has been solved by browser vendors, the need to adopt this strategy has
diminished and ultimately disappeared (i.e. there was no longer much to be gained with the
high-performance mode in most circumstances) and ScientiaMobile elected to "remove" this
option to simplify configuration and go in the direction of uniform API behavior in different
contexts.

Accessing ScientiaMobile's private Maven repository using SBT

SBT is the de facto standard for building and packaging Scala applications. Many Scala developers prefer
it over the classic Maven client to access Maven repositories too.

You can access ScientiaMobile's private Maven repository using SBT 1.5.0 or above, using this
configuration.

1. Create a file called repositories under <user_home>/.sbt and put this content inside it:

[repositories]
local
maven-local
maven-central
my-ivy-proxy-releases: https://maven.scientiamobile.com/repository/wurfl-onsite/, [organization]/[module]/(scala_[
scalaVersion]/)(sbt_[sbtVersion]/)[revision]/[type]s/[artifact](-[classifier]).[ext]
my-maven-proxy-releases: https://maven.scientiamobile.com/repository/wurfl-onsite/

This will configure a list of repositories: your local one, Maven Central and ScientiaMobile's private repo.

2. Then create a file called credentials under the same directory and copy this content inside it,
replacing the asterisks (***) with your actual repository credentials:

realm=Sonatype Nexus Repository Manager
host=maven.scientiamobile.com
user=***
password=***

3. The last step is to add a reference to the credentials file to your build file with this line:

credentials += Credentials(Path.userHome / ".sbt" / "credentials")

You can now use the usual sbt update, sbt compile commands on your project and download the WURFL
API dependencies.

© 2024 ScientiaMobile Inc.

All Rights Reserved.

NOTICE: All information contained herein is, and remains the property of ScientiaMobile Incorporated and
its suppliers, if any. The intellectual and technical concepts contained herein are proprietary to
ScientiaMobile Incorporated and its suppliers and may be covered by U.S. and Foreign Patents, patents in
process, and are protected by trade secret or copyright law. Dissemination of this information or
reproduction of this material is strictly forbidden unless prior written permission is obtained from
ScientiaMobile Incorporated.

	"The first step in a great mobile experience"
	ONSITE SCALA API
	Support
	Update Notifications

	WURFL OnSite Scala API: User Guide
	Requirements
	Installation
	Caching

	Capability Filtering
	Virtual Capabilities
	Configuring WURFL updater
	Running "periodic" updates.
	Running "on demand" update.

	Sample

