
"The first step in a great mobile experience"

DOCKER GETTING STARTED

Support

The ScientiaMobile Enterprise Support Portal is open to all WURFL users, both commercial license holders
and evaluation users. It represents the combined knowledge base for the WURFL community. Commercial
licensees are invited to post questions in the forum using the account to which their licenses are
associated. This may mean faster handling of those posts by ScientiaMobile's personnel.

For commercial license holders, there are tiered support levels to address a variety of business support
needs. After logging into your account, commercial licensees with support options can access the
Enterprise Support portal to post tickets. These tickets will receive expedited attention.

To inquire about support plans, use our License Inquiry or our General Inquiry form.

Update Notifications

If you would like to be notified of our API updates, major data updates, and other technical changes,
please subscribe to our ScientiaMobile Announcements list

www.scientiamobile.com
Tel +1.703.310.6650
E-mail: sales@scientiamobile.com

Copyright © 2025 ScientiaMobile, all rights reserved. WURFL
Cloud, WURFL OnSite, WURFL and, InFuze WURFL InSight
and respective logos are trademarks of ScientiaMobile.
Apache is the trademark of the Apache Software
Foundation. NGINX is the trademark of Nginx Software Inc.
Varnish is the trademark of Varnish Software AB

WURFL Microservice for Docker

https://support.scientiamobile.com/hc/en-us
https://support.scientiamobile.com/hc/en-us
https://www.scientiamobile.com/inquiry
https://www.scientiamobile.com/contact
https://www.scientiamobile.com/page/enewsletter

Using WURFL Microservice for Docker will allow you to run your own WURFL-based device detection
service in your hosting infrastructure by deploying familiar Docker images as containers through a
ScientiaMobile Docker repository. If you are not familiar with Docker and the possibilities of Docker
containers, here is a good place to get started.

WURFL Microservice Client API (WM Client)

Given an HTTP Request and a device capability name, the WURFL Client API will return the corresponding
property value.

You can integrate the WURFL Microservice for Docker with major programming languages, including: You
can integrate the WURFL Microservice Standard, Basic or Pro Edition with major programming languages,
including:

.NET (C#)
Java
PHP
Node.js
Golang.
Python.
Scala
Rust

WURFL Microservice Architecture

WURFL Microservice Server (WM Server) is a service that exposes its functions to the WURFL
Microservice Client API (WM Client). The Client API depends on the availability of the WM server to work.

The following diagram explains the overall architecture of WURFL Microservice as deployed through the
ScientiaMobile Docker Private Registry. The Image will start an instance of the WURFL Microservice Server
as a container. In addition to supporting the REST interface for API clients, the service will periodically
query ScientiaMobile for updates to the WURFL Device Description Repository in order to include the
profiles of newly released devices.

https://www.docker.com/
https://docs.docker.com/get-started/
https://docs.scientiamobile.com/documentation/wurfl-microservice/dotnet-api-user-guide
https://docs.scientiamobile.com/documentation/wurfl-microservice/java-api-user-guide
https://docs.scientiamobile.com/documentation/wurfl-microservice/php-api-user-guide
https://docs.scientiamobile.com/documentation/wurfl-microservice/nodejs-api-user-guide
https://docs.scientiamobile.com/documentation/wurfl-microservice/go-api-user-guide
https://docs.scientiamobile.com/documentation/wurfl-microservice/python-api-user-guide
https://docs.scientiamobile.com/documentation/wurfl-microservice/scala-api-user-guide
https://docs.scientiamobile.com/documentation/wurfl-microservice/rust-api-user-guide

Note 1: While the WM Client feels like a "standalone API" for most practical purposes, under
the hood it requires interaction with the WURFL Microservice HTTP server which introduces
some latency (hugely mitigated by a built-in caching layer in the WM Client). For this reason,
ScientiaMobile does not refer to the WURFL Microservice Client API (WM Client) as a "WURFL
API" (that name is reserved for the WURFL OnSite APIs).

Note 2: communication between the WM Client API and the WM Server happens through a
REST API, but this is totally transparent to users of WURFL Microservice and ScientiaMobile
acknowledges this aspect of the WURFL Microservice product for sake of transparency.
Unless you have a very specific use-case(s), we strongly discourage you from utilizing the
REST Interface directly. Not only does the WM Client provide a caching layer (which delivers
much greater performance), but ScientiaMobile reserves the right to modify the internal
REST API or even to switch to different non-REST protocols in future versions of the product
without notice.

Deploying the Docker Container and Setting up the WM Client APIs

1. (Only for first-time WURFL Microservice users) Obtain a license for the Product from

ScientiaMobile.

This will let you use your ScientiaMobile credentials to login into the ScientiaMobile private registry
and enable deployment of the product.

2. Login to the ScientiaMobile Docker Registry.

docker login docker.scientiamobile.com -u <username>

Details on the Docker login command can be found here.

https://www.scientiamobile.com/products/wurfl-onsite-device-detection/
https://docs.docker.com/engine/reference/commandline/login/

Docker Images are currently available based on the set of Capabilities (Device Properties) and API
Programming Language licensed from ScientiaMobile.

3. Use Docker to download, deploy, and start the WURFL Microservice HTTP server in an

environment which makes sense for you (i.e. development, test, production, etc).

docker run --name wm-server --rm -p 8080:80 \
 -v /tmp/wm-server-logs:/var/log/wm-server \
 -e WM_CACHE_SIZE="200000" \
 -e WM_MAX_CORES=7 \
 -e WM_WURFL_UPDATER_DATA_URL=https://data.scientiamobile.com/xxxxx/wurfl.zip
 -e WM_ACCESS_LOG_TO_FILE=true \
 -e WM_ERROR_LOG_TO_FILE=true docker.scientiamobile.com/<license_id>/wurfl-microservice.server

To reduce server load it is suggested to use a big server side cache: WM_CACHE_SIZE="200000"
will do for a medium server, "300000" for a large one.
Use WM_MAX_CORES to limit the number of threads used by the server (with no option server
will use all necessary threads to keep serving requests).
WM_WURFL_UPDATER_DATA_URL allow to download an up-to-date version of wurfl.zip before
wurfl engine started, and enable automatic update of it (replace
https://data.scientiamobile.com/xxxxx/wurfl.zip with your data URL from ScientiaMobile Vault)
WM_ACCESS_LOG_TO_FILE=true will log HTTP access /var/log/wm-server/access.log
WM_ERROR_LOG_TO_FILE=true will log errors in /var/log/wm-server/error.log

Important Note for Users of the Old DOUBLE LRU Cache Provider (pre 1.2.0.0): for backwards
compatibility, older configurations are still supported and will not generate errors or warnings, but
internally the new SINGLE LRU Cache is adopted for better performance.

4. Verify that the HTTP Server is running:

Copy the IP address of the web server, open a browser and visit the http://<instance-ip>/v2/status/json
URL address. You should see a small JSON object that vouches for the health of your installation.

Alternatively, you can use curl from a shell terminal: assuming your IP is 42.31.167.253, the following
command will confirm that the Docker Image has been deployed successfully and that the WM Server is
up and running.

$ curl http://42.31.167.253/v2/status/json
{
 "lookup_request": 0,
 "lookup_useragent": 0,
 "lookup_device_id": 0,
 "make_model_requests": 0,
 "server_info_requests": 8,
 "v1_capabilities_requests": 0,
 "not_found_404": 0,
 "server_uptime": 23171
}

if your instance responds with something like this, everything looks good. Your WURFL Microservice
server is up and running!

The WM Client API now has a WM server to talk to.

The WM Client API now has a WM server to talk to. More about Client APIs later.

5. (Only for first-time WURFL Microservice users) Install the WM Client API package and

import the API in your project to start using it in your application.

WM Client APIs are available for the following supported languages (regardless of the capability set/tier):
Go (golang), Java, .NET, Node.js and PHP.

WM Client APIs for the respective languages are provided on the ScientiaMobile public github repository:

dotNET : https://github.com/WURFL/wurfl-microservice-client-dotnet
Golang : https://github.com/WURFL/wurfl-microservice-client-golang
Java : https://github.com/WURFL/wurfl-microservice-client-java
Node.js : https://github.com/WURFL/wurfl-microservice-client-nodejs
PHP : https://github.com/WURFL/wurfl-microservice-client-php
Python : https://github.com/WURFL/wurfl-microservice-client-python
Rust : https://github.com/WURFL/wurfl-microservice-client-rust

You can find the documentation for each WM Client API here:

1. Golang (GO Language)

2. Java

3. Microsoft .NET

4. PHP

5. Node.js

6. Python

7. Rust

Maven Central, Nuget and NPM also carry the WM Client API libraries for Java, .NET and Node.js
respectively.

© 2025 ScientiaMobile Inc.

All Rights Reserved.

NOTICE: All information contained herein is, and remains the property of ScientiaMobile Incorporated and
its suppliers, if any. The intellectual and technical concepts contained herein are proprietary to
ScientiaMobile Incorporated and its suppliers and may be covered by U.S. and Foreign Patents, patents in
process, and are protected by trade secret or copyright law. Dissemination of this information or
reproduction of this material is strictly forbidden unless prior written permission is obtained from
ScientiaMobile Incorporated.

https://github.com/WURFL/wurfl-microservice-client-dotnet
https://github.com/WURFL/wurfl-microservice-client-golang
https://github.com/WURFL/wurfl-microservice-client-java
https://github.com/WURFL/wurfl-microservice-client-nodejs
https://github.com/WURFL/wurfl-microservice-client-php
https://github.com/WURFL/wurfl-microservice-client-python
https://github.com/WURFL/wurfl-microservice-client-rust
file:///documentation/wurfl-microservice/go-api-user-guide
file:///documentation/wurfl-microservice/java-api-user-guide
file:///documentation/wurfl-microservice/dotnet-api-user-guide
file:///documentation/wurfl-microservice/php-api-user-guide
file:///documentation/wurfl-microservice/nodejs-api-user-guide
file:///documentation/wurfl-microservice/python-api-user-guide
file:///documentation/wurfl-microservice/rust-api-user-guide

	"The first step in a great mobile experience"
	DOCKER GETTING STARTED
	Support
	Update Notifications

	WURFL Microservice for Docker
	WURFL Microservice Client API (WM Client)
	WURFL Microservice Architecture

